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We consider decentralized algorithms where each node in a network aims at computing an aggregate
quantity of all node states using only local information without any centralized agency. Recently, a large
amount of interest on this type of algorithms has been arisen in various contexts such as social networks [1,
2], Internet [3, 4], and biological systems [5], because they are not only useful to explain phenomena
observed in a network system, but also useful for the design of new computation protocols. Since many
network systems inherently contain restrictions on memory and communications (i.e. parsimonious),
designing a decentralized algorithm under such restrictions is an important problem. There have been
many studies trying to account for these restrictions. For example, in the context of averaging algorithms,
randomized gossip algorithms based on reversible Markov chains [6] have been considered as well as
averaging algorithms based on non-reversible Markov chains [7]. For the averaging problem, also the
effects of quantization of messages exchanged between nodes have been studied [8, 9].

In this paper, we study a rank aggregation problem where the goal is to rank a set of alternatives
in decreasing order of users’ preference in a decentralized manner. A specific example is voting over a
set of alternatives, which frequently arises in social networks including surveys of consumer preferences.
The goal is to identify a list of top k popular products in decreasing order of their popularity. Such
cooperative decision making problem arises in a variety of applications such as in surveys of preference
in social networks, decentralized database systems, and sensor networks.

The main contributions of our work are in (1) allowing for arbitrary number of alternatives m ≥ 2,
and (2) algorithms for ranking that are based on computing a generalized version of the mode, and (3)
allowing for user preference across a set of alternatives. For computing the mode in network systems
where each node prefers one out of two alternatives, the classical voter model [10–12] has been extensively
studied. Algorithms for binary consensus were proposed to serve as an improvement of the voter model
with respect to the error probability and the convergence speed to the correct consensus [13–15]. A
quantized version of the gossip algorithm was suggested to identify the quantization interval containing
the average value [8]. Using this algorithm, the majority voting problem can be solved with only four
states per node. However, these works are restricted to the case of two alternatives.

The detailed setup that we consider is as follows: we consider a network system that consists of
nodes [n] = {1, 2, . . . , n} where n ≥ 1 and a finite set of alternatives [m] = {1, 2, . . . ,m} where m ≥ 2.
The preference of each node j ∈ [n] over alternatives is described by the vector of ranking scores
~vj = (v1, v2, . . . , vm) where vi ≥ 0 and

∑m
i=1 vi = 1. A vector of ranking scores ~vj is such that the i-th

coordinate of this vector represents preference of node j for alternative i. A top-k ranking is a tuple of
alternatives (a1, a2, . . . , ak), for k ≤ m, such that ai ∈ [m] for every i, and U(a1) ≥ U(a2) ≥ . . . ≥ U(am)
where U(ai) is the sum of ranking scores for alternative ai over all nodes. The ranking problem is to
construct a decentralized algorithm which ensures that every node computes a top-k ranking correctly
after finitely many number of iterations.

First, we propose an algorithm that computes the full ranking of alternatives for any connected
network graph by generalizing the discretized averaging algorithm [8]. Our algorithm runs in a time
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equivalent to the mixing time of the corresponding random walk in the network. Our algorithm uses
2m(m−1) states per node. Although this algorithm runs correctly on any connected network graph, it is
not parsimonious in the required memory per node. Next, we present parsimonious algorithms for the
mode computation and the top-k ranking computation for the case of small k.

Our mode computation algorithm is described as follows. As the behavior of bloggers, at each
time step, a randomly chosen node observes another node chosen uniformly at random and updates its
preference state. The main idea of the update rule is the introduction of two extra states (weak and
strong) for each alternative j ∈ [m]. Based on this idea, we prove that this algorithm converges correctly
with probability of error that diminishes exponentially with the total number of nodes; this result is
established using mean field arguments along with a concentration inequality for random processes.

Finally, we propose an efficient algorithm for computing a top-k ranking. This algorithm starts with
assigning to each node a random k-ranking state (b1, b2, . . . , bk), where bi ∈ [m] for every i, according to a
probability that depends on the ranking score vector of the node. At this step, m(m−1) . . . (m−k+1) =
O(mk) many k-ranking states are needed. We prove that the problem of computing the mode among
a set of k-ranking states is equivalent to the problem of computing the top-k ranking on the set of the
original alternatives. Using our mode computation algorithm, we prove that the error probability of our
top-k ranking algorithm decays exponentially with the total number of nodes. We examine convergence
of our algorithms using simulations.
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