
Stability of the Max-Weight Routing and Scheduling
Protocol in Dynamic Networks and at Critical Loads

Matthew Andrews
Bell Laboratories
Murray Hill, NJ

andrews@research.bell-labs.com

Kyomin Jung
∗

MIT
Cambridge, MA

kmjung@mit.edu

Alexander Stolyar
Bell Laboratories
Murray Hill, NJ

stolyar@research.bell-labs.com

ABSTRACT
We study the stability of the Max-Weight protocol for
combined routing and scheduling in communication networks.
Previous work has shown that this protocol is stable for ad-
versarial multicommodity traffic in subcritically loaded sta-
tic networks and for single-commodity traffic in critically
loaded dynamic networks. We show:

• The Max-Weight protocol is stable for adversarial
multicommodity traffic in adversarial dynamic networks
whenever the network is subcritically loaded.

• The Max-Weight protocol is stable for fixed multi-
commodity traffic in fixed networks even if the network
is critically loaded.

The latter result has implications for the running time of
the Max-Weight protocol when it is used to solve multi-
commodity flow problems. In particular, for a fixed problem
instance we show that if the value of the optimum solution
is known, the Max-Weight protocol finds a flow that is
within a (1 − ε)-factor of optimal in time O(1/ε) (improv-
ing the previous bound of O(1/ε2)). If the value of the
optimum solution is not known, we show how to apply the
Max-Weight algorithm in a binary search procedure that
runs in O(1/ε) time.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems]: Sequencing and scheduling.

General Terms: Algorithms.

Keywords: Routing, scheduling, stability.

1. INTRODUCTION
In this paper we consider the problem of combined packet

routing and scheduling in communication networks. We
study an algorithm introduced by Tassiulas and Ephremides
in [22, 23] and Awerbuch and Leighton in [7, 8] that has
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been referred to by a number of names, including the Max-
Weight algorithm, the Differential Backlog algorithm, the
Backpressure algorithm and the Load Balancing algorithm.
The exact definition of this algorithm will be given in Sec-
tion 1.2. The essential idea is that each node maintains a
queue for each destination. When an edge needs to schedule
a packet it tries to move a packet from a large queue to a
small queue. Throughout this paper we shall refer to this as
the Max-Weight algorithm.

Since the Max-Weight algorithm was first defined, it has
been studied in a variety of wireless and wireline contexts.
The main reason for its popularity is that it is throughput-
optimal in a wide range of circumstances. By throughput-
optimal we mean that it can serve all the offered packets and
maintain stability whenever this is feasible. The following
two results are particularly relevant to our work.

• In [1], Aiello, Kushilevitz, Ostrovsky and Rosen showed
that in static graphs with multicommodity demands,
the Max-Weight algorithm achieves stability when-
ever the network is subcritically loaded. (The network
is subcritically loaded if there is a way to route the
traffic so that on any edge the offered load is strictly
less than the edge capacity.)

• In [5], Anshelevich, Kempe and Kleinberg showed that
in dynamic graphs with single-commodity demands,
the Max-Weight algorithm achieves stability when-
ever the network is critically loaded. (The network is
critically loaded if there is a way to route the traffic so
that on any edge the offered load is at most the avail-
able edge capacity.) A similar result was also proved
by Awerbuch et al. [6] although under a slightly differ-
ent input model. The model of [5] is slightly closer to
the model that we consider in our work.

The above two results raised two immediate open ques-
tions. First, what is the performance of the Max-Weight
algorithm in dynamic graphs with multicommodity demands?
Such a problem is of importance since dynamic graphs rep-
resent a simple model of wireless ad-hoc networks and we
would like to know how well the Max-Weight algorithm
will operate in such networks. Second, what is the perfor-
mance of the Max-Weight algorithm in critically loaded
networks with multicommodity demands? This question
has relevance to the running time of iterative algorithms
for multicommodity flow problems. Before we can describe
our results in detail and compare them with previous work
we must define our model together with the Max-Weight
algorithm.



1.1 The Model
We model a communication network by a graph G =

(V, E), where |V | = n, |E| = m. Each edge e ∈ E mod-
els a communication channel. We assume that the network
has the following properties.

• The network is directed. We model a two-way com-
munication channel by two directed links. Let ∆ be
the maximum degree of the network.

• Time is slotted and indexed by t ∈ N.

• The capacity of an edge changes over time. (As men-
tioned earlier, this allows us to model wireless net-
works.) We let ce(t) be the capacity of edge e at time
t. If e = (v, u) then data of maximum size ce(t) can
be transferred from node v to node u at time t. The
values of this edge capacity process are controlled by
an adversary whose properties are described below.

Let C = {ce(t) : e ∈ E, t ∈ N}, i.e. C is the set of
all possible edge capacities. Let cmax be the maximum
possible edge capacity. If C = {0, 1} then we say that
G is a dynamic graph. In this case we say that edge e
is open at time t if ce(t) = 1. If C = {1} then we say
that G is a static graph.

• The adversary determines when packets are injected.
When packet p is injected, its size `p, its source node
sp and its destination node dp are specified. However,
the route that the packet must follow is not specified.
If there exists a node d such that dp = d for all d
then we say that we have a single-commodity problem,
otherwise we have a multicommodity problem. For
much of the paper we shall focus on the case in which
packets have unit size, i.e. `p = 1 for all p.

• The adversary controls packet arrivals and edge capac-
ities with a limitation that the injection sequence does
not inherently overload the network. (Definition 1.)

• It is the purpose of a routing and scheduling protocol, to
determine which data (of size at most ce(t)) to transmit
along edge e at time t.

As already mentioned, we assume that the adversary does
not inherently overload the network, otherwise stability is
impossible to achieve. In particular:

Definition 1 (A(ω, ε)-adversary). We say that an ad-
versary injecting the packets and controlling the edges is an
A(ω, ε)-adversary for some ε ≥ 0 and some integer ω ≥ 1,

if the following holds: For any time t ∈ N, let I [t,t+ω−1] be
the set of packets injected during the ω time steps from t to
t+ω−1. Then the adversary can associate with each packet
p ∈ It, a simple path Γp from sp to dp, such that for all
e ∈ E, X

p∈I[t,t+ω−1],e∈Γp

`p ≤ (1− ε)

t+ω−1X
t′=t

ce(t
′).

1.2 The Protocol
We are now in a position to define the protocol Max-

Weight . We assume that each vertex v has n queues: one
queue for each destination. Let Qv,d be the queue at node
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Figure 1: In the dynamic graph adversarial model,
at each time slot the adversary determines packet
arrivals and edge capacities. The Max-Weight(β)
protocol then determines which packets will be
transmitted along each edge. Data is stored at each
node according to its eventual destination.

v for data having destination d. Let qt
v,d be the total size of

data in queue Qv,d at time t. We define a general algorithm
Max-Weight(β) that is parameterized by a parameter β.
We use Max-Weight to denote the algorithm with β = 1.
The reason to introduce the parameter β is that the analysis
is easier when β is large. Under Max-Weight(β) , each
node v does the following at each time t:

Algorithm Max-Weight(β)

• Phase 1: Accept all packets injected by the Adversary to
v.

• Phase 2: For each edge e = (v, u) that appears at time
t, let d be such that (qt

v,d)β − (qt
u,d)β is maximized

over all d ∈ V (with an arbitrary tiebreaking rule). If
qt

v,d − qt
u,d is greater than1 ∆ · cmax, send data of size

max{ce(t), q
t
v,c} from Qv,d to Qu,d along e.

• Phase 3: Remove any packets that arrive at their des-
tination.

The algorithm can be understood to be designed so that
the following potential function decreases as much as possi-
ble.

P (t)
4
=
X
v,d

(qt
v,d)β+1.

1The reason we require that the difference between the
queue heights is more than ∆ · cmax is that we want to make
sure that the potential in the system does not increase when
data is transferred from one queue to another. We believe
that our results would still hold even if we only require this
difference to be positive.



1.3 Contribution
We say that a system is stable if the queue sizes are bounded

over time. The aim of this paper is to derive conditions un-
der which the Max-Weight protocol is stable. Our results
are:

1. In Section 3 we show that the Max-Weight(β) proto-
col is stable in adversarial dynamic graphs with adver-
sarial multicommodity demands for any ε > 0 and for
some large β. The reason we study Max-Weight(β)
before the (more natural) Max-Weight protocol is
that Max-Weight(β) is easier to analyze and allows
us to introduce some of the essential ideas gradually.

2. In Section 4 we show that the Max-Weight protocol
is stable in adversarial dynamic graphs with adversar-
ial multicommodity demands for any ε > 0.

3. In Section 5 we briefly sketch how to extend our re-
sults to the case of graphs with arbitrary time-varying
capacities and arbitrary (upper bounded) packet sizes.

4. In Section 6 we turn our attention to the problem in
which ε = 0. Although we are not able to resolve this
question in full generality, we show that in the case of
static graphs with constant traffic patterns, the Max-
Weight protocol is stable.

5. In Section 7 we show how the previous result can be
used to obtain better bounds on the running time
of the Awerbuch-Leighton multicommodity flow algo-
rithm. Specifically, for a fixed instance of the problem
and assuming that a flow of value λ∗ is feasible, they
show how to find a flow of value (1 − ε)λ∗ in time
O(1/ε2). We show that in fact the running time is
only O(1/ε). Hence if the value of the optimum so-
lution to the multicommodity flow problem is known,
the Max-Weight protocol finds a flow that is within
a (1− ε)-factor of optimal in time O(1/ε). If the value
of the optimum solution is not known, we show how to
apply the Max-Weight algorithm in a binary search
procedure that runs in O(1/ε) time.

1.4 Previous work
As already mentioned, the Max-Weight algorithm was

first introduced by Tassiulas and Ephremides [22, 23] and
Awerbuch and Leighton [7, 8]. Tassiulas and Ephremides
studied the algorithm in the context of time-varying wire-
less networks and showed stability under the assumption
that the traffic injections and the network dynamics are con-
trolled by a stationary stochastic process (rather than an
adversary). Awerbuch and Leighton were interested in mul-
ticommodity flow problems and showed that Max-Weight
can be used to find a feasible flow in time O(LM

ε2 (K +

log(K
ε

))) assuming that there exists a feasible flow when
the demands are increased by a factor of 1 + ε. Here L is
the length of the longest flow path and K is the number of
demands. They remark that by using binary search, they
can then obtain a (1−ε)-approximation to the optimal value
of a flow.

In [1], Aiello et al. extended the study of Max-Weight to
the case of static networks with adversarially generated mul-
ticommodity demands. They showed that Max-Weight is
stable as long as ε > 0. They also extended the result to

dynamic networks in which ce(t) ∈ {0, 1}. However, their re-
striction on the adversary in this context is that for all e and
t,
P

p∈I[t,t+ω−1],e∈Γp
`p + εω ≤Pt+ω−1

t′=t ce(t
′). Note that the

additive term on the left-hand side means that each edge has
to appear frequently, i.e. they preclude a situation in which
the adversary can remove an edge from the network for long
periods. In such a case it is possible to apply an analysis
that is very similar to the case for static graphs. The result
that we prove in Section 4 addresses a more general model
of dynamic graphs in which the adversary can remove edges
from the network for arbitrarily long periods.

In [5], Anshelevich et al. showed that for single-commodity
traffic Max-Weight is stable in adversarial dynamic graphs
when ε = 0. Our result in Section 4 can be viewed as ex-
tending the result of [5] (for ε > 0) to the case of multicom-
modity traffic. A similar result for single-commodity traffic
was proved by Awerbuch et al. in [6]. However, their ad-
versary was somewhat different (and more general). They
showed stability under the assumption that the adversary
can construct a schedule under which the queues are stable.
Such an adversary may not conform to Definition 1.

The Max-Weight algorithm has also been studied in
wireless networks under the node-constraint model. Some
papers that show stability under stochastically generated
traffic include [3, 2, 18]. In contrast, it was shown in [4]
that for adversarial traffic in which the channel rates can
be arbitrarily small, no online algorithm (including Max-
Weight ) can be stable. More recently, there is a body of
work that aims to combine Max-Weight with congestion-
control algorithms that decide how much data is to be in-
jected into the network. Example papers include [21, 10,
17]. The aim in these papers is to maximize the total utility
of traffic injected into the network, for example the sum over
all demands of the logarithm of the injected flow rate.

Other situations where the Max-Weight algorithm has
been studied include scheduling input-queued crossbar switches
(see e.g. McKeown et al. [15]) and load balancing tasks in
networks of processors (see e.g. Muthukrishnan and Rajara-
man [16]).

1.5 Why Previous Analyses Do Not Work
Directly for Dynamic Networks

We now briefly explain why we cannot directly apply pre-
vious analyses of Max-Weight that were developed for
static networks (or networks that vary either in a stochas-
tic manner or else guarantee that each edge appears fre-
quently). The main idea behind most previous analyses is
that at each time step the potential function increases by at
most O((maxv,d qt

v,d)β−1). Moreover, if maxv,d qt
v,d is large

then the potential function strictly decreases (by an amount
Θ(ε(maxv,d qt

v,d)β)). In other words, if the queues are suf-
ficiently large, we always get a decrease in potential. This
means that the total potential stays bounded which means
in turn that the maximum queue size in the network remains
bounded. However, in an adversarial network the adversary
is able to disconnect large queues from the network for arbi-
trarily long periods. This means that we can no longer say
that if the maximum queue size is large then the potential
strictly decreases.

The method of Anshelevich et al. [5] for single-commodity
traffic in dynamic networks involved different techniques and
a different potential function. However, their analysis made
critical use of the max-flow min-cut theorem and hence it



cannot be extended to multicommodity traffic due to the
existence of flow-cut gaps in the multicommodity setting.

2. OVERVIEW OF THE STABILITY PROOFS
The proofs of stability of Max-Weight(β) and Max-

Weight in dynamic networks is quite complex. Hence in
this section we give a high-level overview of the proofs. The
first part of the analysis concerns the dynamics of the po-
tential function P (t) =

P
v,d(qt

v,d)β+1. By the definition of

the Max-Weight(β) protocol the change in the potential
function at any time satisfies the following two key proper-
ties.

• Whenever the Max-Weight(β) protocol moves data
from node v to node u, the potential in the system due
to this transmission decreases.

• When data is injected into the network, the potential
in the system may increase. However, we can obtain
the following Lemma (whose proof is contained in the
Appendix).

Lemma 1. Consider the Max-Weight(β) protocol
in adversarial dynamic graphs with multicommodity
demands for ε > 0. Then for each injection of packet p
at time t having size `p, we can associate this injection
with packet movements along its corresponding simple
path so that the sum of potential changes due to these
movements are at least − ε

1−ε
`p(β + 1)qβ + `pO(qβ−1),

where q is the height of the queue where the packet is
injected. Moreover, all these changes occur in a win-
dow of size ω. Hence there is a constant q∗ depending
on n, ω and ε, so that if q ≥ q∗ the sum of potential
changes due to the injection is less than −ε`pqβ.

The above properties mean that we are able to show a net
decrease in the potential in the system, as long as there are
“sufficient” injections into queues that are large enough. A
priori, it is not clear that the adversary has to ever inject
packets into large queues. However, we show that for both
Max-Weight(β) and Max-Weight, if the queue sizes grow
without bound, it must be the case that there are enough
injections into large queues to cause a decrease in potential.
This leads to a contradiction.

2.1 Overview of stability ofMax-Weight(β)
We begin by giving an overview of the stability of Max-

Weight(β) for some parameter β. The analysis is easier
than the analysis for Max-Weight since an injection into
a large queue of size q leads to a large decrease in potential,
namely a decrease of O(qβ). We focus on the case of dynamic
graphs (i.e. ce(t) ∈ {0, 1} for all t), and the case of unit size
packets. The key observations are the following:

• Whenever the Max-Weight(β) protocol serves a packet,
the packet moves to a smaller queue. Therefore, the
only way to increase the maximum queue size in the
network is via a packet injection.

• Suppose that the adversary can make the network un-
stable. Let St be the configuration of the network at
time t. Suppose that St = St∗ for some t < t∗. Then,
the period between time t and time t∗ was completely
redundant in terms of making the queue sizes grow.

Hence, we can assume without loss of generality that
St 6= St∗ .

• The number of queues in the network is at most n2.
Therefore, if we let q be the maximum queue size, the

number of possible network configurations is O(qn2
).

Therefore, in time O(qn2
), there must be some injec-

tion into a queue of size at least q. Let tq be the first
time this happens. By our previous discussion, the
decrease in potential due to this injection is Ω(qβ).
Moreover, by Lemma 1 we observe that only the injec-
tions to queues having size less than some constant q∗

can make the potential increase. Hence the maximum
increase in potential due to any injection is at most
(q∗)2 which implies that the total increase in potential

up to time tq is O(qn2
).

• Therefore, for large enough q, the total increase in po-
tential up to time tq is less than the decrease in poten-
tial at time tq. This is clearly a contradiction since as
the queue sizes grow without bound at the time steps
tq, the potential in the network must also grow without
bound.

2.2 Overview of stability ofMax-Weight
We now give an overview of the stability of the Max-

Weight protocol in dynamic networks. The proof is more
complicated since we do not get such a large decrease in
potential when a packet is injected into a large queue. The
structure of the proof is as follows. A similar argument can
be applied to show that the Max-Weight(β) protocol for
any β ≥ 1 is stable under the same adversarial setup.

• We define a set of queue thresholds F1 À F2 À F3 . . ..
Consider some fixed time t0 and let the queue sizes at
that time be q1 ≥ q2 ≥ q3 . . .. Then, if the total data
in the network is sufficiently large, there must be some
k such that qk ≥ Fk and qk+1 ≤ Fk+1. The queues
having size bigger than Fk are called tall queues. The
other queues are called small queues.

• Let t1 be the first time after t0 that there is an injec-
tion of a packet to a tall queue or a transmission of a
packet from a tall queue to a small queue. By Lemma 1
an event of the first type causes a large decrease in the
system potential. The definition of potential directly
implies that an event of the second type also causes a
large decrease in the system potential. We can there-
fore show that the total potential remains bounded as
long as the increase in potential between times t0 and
t1 is less than the decrease in potential due to the in-
jection or transmission at time t1.

• Note that the only increase in potential can come from
an injection to a small queue. There are two cases to
consider:

– Case 1: The injections into the small queues
and the capacities utilized by the transmissions
between small queues satisfy the definition of an
A(ω, ε)-adversary. In this case we can use an in-
ductive argument to bound the total increase in
potential associated with these queues (since the
number of these queues is strictly less than n).



– Case 2: The capacity associated with some of
the injections into the small queues is utilized
by transmissions between large queues. We call
these injections “bad injections”. However, re-
call that there are no injections into tall queues
between time t0 and t1. Hence transmissions be-
tween tall queues have the effect of “smoothing
out” the heights of the tall queues. That is, a
transmission between two tall queues reduces the
difference of the heights of these queues. If there
is a transmission between two tall queues of very
different heights, then the resulting loss in poten-
tial is enough to compensate for the increase in
potential between time t0 and time t1. If on the
other hand the only transmissions between tall
queues is between queues of similar heights then
there is a limit to how many such injections there
are. This in turn leads to a bound on the number
of bad injections. Hence we can use an inductive
argument to bound the total increase in poten-
tial associated with the small queues, subject to
this bound on the number of bad injections. Once
again we can make sure that this increase is less
than the decrease in potential associated with the
injection or transmission at time t1.

iq    >> q

qi

i+1

1i+1 qqmq

Small queuesTall queues

. . .

. . .

Figure 2: We define a set of queue thresholds F1 À
F2 À . . .. Consider some fixed time and let the queue
sizes at that time be q1 ≥ q2 ≥ q3 . . .. Then, if the total
data in the network is sufficiently large, there must
be some k such that qk ≥ Fk and qk+1 ≤ Fk+1. The
queues having size at least Fk are called tall queues.
The other queues are called small queues.

3. STABILITY OF Max-Weight(β) IN
DYNAMIC NETWORKS

In this section and the next we present the details of our
stability proofs for dynamic networks.

Theorem 2. For β > n2, the Max-Weight(β) protocol
is stable in adversarial dynamic graphs with multicommodity
demands for any ε > 0.

Proof. First note that whenever the Max-Weight(β)
protocol serves a packet, the packet moves to a smaller
queue. Therefore, the only way to increase the maximum
queue size in the network is via a packet injection to the
tallest queue.

Now, suppose that the adversary can make the network
unstable. For q ∈ N, let tq be the first time so that the size
of the tallest queue becomes at least q. Let St be the config-
uration of the network at time t. This consists of the queue
sizes at time t, and for all t′ ∈ [t−ω + 1, t], the information
regarding the set of open edges at time t′, and the source and
destination information of all the packets injected at time t′.
Now suppose that St = St∗ for some t < t∗. Then, the pe-
riod between time t and time t∗ was completely redundant in
terms of making the queue sizes grow, i.e. removing all the
processes during time [t, t∗− 1] results in another adversary
which make the network unstable. Hence we can assume
without loss of generality that St 6= St∗ for any t, t∗ ≤ tq,
t 6= t∗. Let n be the number of nodes. Then, the number of
queues in the network is at most n2. So, by considering n
and ω as constants, the number of possible network config-
urations in which the maximum queue size is less than q is

O(qn2
). Therefore, tq = O(qn2

).
Now, by Lemma 1, each injection to a queue of size bigger

than some constant q∗ makes the potential decrease. More-
over, each injection to a queue of size at most q∗ makes the
potential increase by at most (q∗+ 1)β+1. Note also that at
each time slot [t, t + ω − 1], the number of injected packets
(except packets having same source and destination) during
that period of time is at most ω|E|, where |E| is the number
of edges. Hence the maximum possible increase in potential
up to time tq + ω is at most (q∗ + 1)β+1 · ω · n2 · tq. If we

consider n, ω and β as constants this expression is O(qn2
).

Note that by the definition of tq, at time tq there must
be a packet injection to a queue of size at least q − 1. By
Lemma 1, the decrease in potential due to this injection is
Ω(qβ). Hence for β > n2, if q is large enough, the decrease
in potential due to this injection is larger than the maximum
possible increase in potential up to time tq + ω. Hence for
large enough q, P (tq+ω) ≤ P (0). But by definition of tq, the
size of the tallest queue at time tq is q. Hence P (tq) ≥ q2,
which is a contradiction. Therefore, there does not exist an
adversary that can make the network unstable.

4. STABILITY OF Max-Weight IN
DYNAMIC NETWORKS

Theorem 3. The Max-Weight protocol is stable in ad-
versarial dynamic graphs with multicommodity demands for
any ε > 0.

Proof. We prove Theorem 3 by showing a stability result
for a more general model, namely for any general adversarial
queuing system with bad packets. We introduce this new
model since in our inductive argument, we need to consider
the case when there are a finite number of injected packets
for which the adversary does not associate a path. These
packets are called bad packets. A precise definition will be
given later.

In the original adversarial dynamic graph model, we have
n2 queues, and there are some constraints on how packets
move between queues, e.g. packets cannot be transmitted
between two queues located at the same node. A general
adversarial queuing system is defined the same as our origi-
nal model, except that in this model the number of queues
can be any finite number, not only n2, and packet trans-
missions between any two different queues are allowed. In
addition, the number of destination queues can be any pos-



itive number. An adversary allowing b many bad packets is
defined as follows.

Definition 2 (A(ω, ε, b)-adversary). We say that an
adversary injecting the packets and controlling the edges in a
general adversarial queue system is an A(ω, ε, b)-adversary for
some ε ≥ 0 and some integers ω ≥ 1 and b ≥ 0, if the fol-
lowing holds: Among all the packets injected over all time,
the adversary can designate b number of these packets as
bad packets. We say all the other injected packets are good
packets. Then for any time t ∈ N, let I [t,t+ω−1] be the set
of good packets injected during the ω time steps from t to
t + ω − 1. Then there is a constant q∗ ≥ 0 so that the Ad-
versary can associate with each packet p ∈ It injected into a
queue of size q̂, a set of edges Γp such thatX

e=(i,j)∈Γp

|qt(i)− qt(j)| ≥ q̂ − q∗,

and for all e ∈ E,X
p∈I[t,t+ω−1],e∈Γp

`p ≤ (1− ε)

t+ω−1X
t′=t

ce(t
′).

From now on in this proof, by Adversary we mean an
Adversary of a general adversarial queue system. It can be
verified that that Lemma 1 is also true for this model. We
now show the following Lemma, which implies Theorem 3.

Lemma 4. For any general adversarial queue system with
A(ω, ε, b)-adversary, where ε > 0, the Max-Weight proto-
col is stable.

Proof. Let ε > 0 and ω be fixed, and let n be the num-
ber of queues. We will show that there exists a constant
B(n, q0, b) such that for a given general adversarial queue
system with n queues, for any A(ω, ε, b)-adversary under
Max-Weight , when the size of the tallest queue at time
t = 0 is at most q0, the sizes of all queues over all t ≥ 0 is
bounded above by B(n, q0, b).

We will use induction on n to show that for any q0 ≥ 0
and b ≥ 0, there exists B(n, q0, b). First, when n = 1, since
there is at least one destination queue, the queue must be a
destination queue. So the claim is true.

Suppose that there exist B(m, q0, b) for all 1 ≤ m ≤ n−1,
and for all q0 ≥ 0 and b ≥ 0. Using this induction hypoth-
esis, we will show that for any q0, B(n, q0, 0) exists. Then,
note that we can set

B(n, q0, 1) = B(n, B(n, q0, 0) + 1, 0),

since at the time when the bad packet arrives, the size of
the tallest queue is at most B(n, q0, 0). Similarly we can set
B(n, q0, i) = B(n, B(n, q0, i − 1) + 1, 0), by considering the
time when the ith bad packet arrives.

Now we only need to prove that B(n, q0, 0) exists. Let
P (t) be the potential of the queues at time t. First note
that by Lemma 1, and the fact that each injection to a
queue of size at most q∗ makes the potential increase by at
most (2q∗ + 1), the maximum possible increase of potential
induced by all the injections during any time window of size
ω is bounded by some constant P0. Now, for fixed n, we will
define some constants Fk, k = 1, 2, . . . , n, which are decreas-
ing over k, and show that for any A(ω, ε)-adversary for a
general adversarial queue system with n queues, for all time

t ≥ 0, P (t) is bounded by some value that is independent of
t. More precisely we will show that

P (t) ≤ (n− 1)F 2
1 + max{nq2

0 , nF 2
1 + 2

√
nF1}. (1)

We will define Fk so that if the size of the kth tallest queue
is smaller than Fk, and the size of the (k−1)th tallest queue
is bigger then Fk−1, than for all the time afterward the size
of the kth tallest queue stays much smaller than Fk−1. For
completeness, first we give definition of Fk. Let Fn = 0.
Given Fk+1, for j = 1, 2, . . . , k, define

Sj
4
= B

�
n− k, Fk+1, (j − 1)(H1 + H2 . . . + Hj−1)

2� ,

Hj
4
=

(n− k)S2
j

ε
,

Fk
4
= Hk + Sk +

P0

ε
.

The motivation for these definitions will appear in the course
of the proof.

Now suppose that we are given a general adversarial queue
system with n queues controlled by an A(ω, ε, 0)-adversary
and Max-Weight, such that all the initial queue sizes are
at most q0.

Suppose that for all time t, such that P (t) < nF 2
1 . Then

it directly shows that the Max-Weight protocol is stable.
Now suppose that there is t0 such that P (t0) ≥ nF 2

1 . By
choosing the smallest such t0, we may assume that P (t0) ≤
max{nq2

0 , nF 2
1 +2

√
nF1} since if P (t0−1) < nF 2

1 , the change
of potential between time t0 − 1 and t0 is at most 2

√
nF1.

Note that for such t0, the size of the tallest queue at that
time is at least F1.

Let q1 ≥ g2 ≥ . . . qn = 0 be the ordered sizes of the queues
at time t0. For 1 ≤ j ≤ n, let Qj be the corresponding jth
tallest queue at time t0. Then since q1 ≥ F1 and qn = 0,
there exists some 1 ≤ k ≤ (n − 1) such that qk ≥ Fk and
qk+1 ≤ Fk+1.
Now fix one such k. We will call all the queues having size
at least Fk at time t0 “tall queues”, and all the other queues
“small queues”. Then note that a packet in a small queue
will never move to a tall queue by Max-Weight . Hence
we can consider the set of all the small queues as a separate
general adversarial queue system. We will call this queue
system the system of small queues. We will use an inductive
argument on this system of small queues to guarantee that
their sizes are bounded by a constant over all time. Now, let
t1 be the first time after t0 such that there is an injection of
a packet to a tall queue or a transmission of a packet from
a tall queue to a small queue. When there is such a t1, our
main argument is that during time t0 ≤ t ≤ t1, the sizes
of the small queues stay much smaller than qk, hence the
sizes of tall queues are much bigger than those of the small
queues. Hence, by Lemma 1, one injection to a tall queue
or one transmission of a packet from a tall queue to a small
queue creates a sufficient decrease in potential. Formally,
we will prove the following Lemma.

Lemma 5. There is t∗, t0 < t∗ ≤ t1 + ω − 1, such that
P (t∗) is smaller than P (t0), and during t0 ≤ t ≤ t∗ the sizes
of small queues are bounded by Fk.

Suppose that Lemma 5 is true. Note that until the time

t∗−1, the potential of all the tall queues, PT (t)
4
=
Pk

i=1(q
t
i)

2,



is non-increasing over time, and the potential of all the

small queues, PS(t)
4
=
Pn

i=k+1(q
t
i)

2, is bounded above by

(n − 1)F 2
1 since the sizes of all the small queues cannot be

bigger than Fk for any time t0 ≤ t ≤ t∗ − 1. Moreover,
at time t∗ we know that the total potential P (t∗) becomes
smaller than P (t0). So for t0 ≤ t ≤ t∗, the potential P (t) is
bounded by

(n− 1)F 2
1 + P (t0) ≤ (n− 1)F 2

1 + max{nq2
0 , nF 2

1 +
√

nF 2
1 }.

Now, again choose the first time t ≥ t∗, if there exists such
t, so that P (t) ≥ nF 2

1 , and set this time as a new t0. Then
by applying the same argument, we obtain that for all time
t ≥ 0, (1) holds. Now, in the case when there is no t1 >
t0 such that at time t1 an injection of a packet to a tall
queue or a transmission of a packet from a tall queue to
a small queue occurs, then for this A(ω, ε, 0)-adversary, the
same argument that will be presented in the proof of Lemma
5 can be applied to show that the sizes of all the small
queues cannot be bigger than Fk for all time t ≥ t0. Also
the potential of tall queues are non-increasing over all time.
Hence also in this case, we obtain that P (t) is bounded by
(n − 1)F 2

k + P (0) ≤ (n − 1)F 2
1 + max{nq2

0 , nF 2
1 + 2

√
nF1}

for all t ≥ t0 as required in (1). So for all t ≥ 0, (1) holds.
Hence B(n, q0, 0) exists.

Proof of Lemma 5. Note that, between time t0 and t1,
there may be some injection of packets to a small queue so
that its corresponding set of edges includes some edges be-
tween tall queues. We will regard these kinds of injected
packets as “bad packets” for the system of small queues,
and we will call these injections “bad injections”. Note that
by considering these packets as bad packets, the dynamics
of small queues can be thought as an independent general
adversarial queue system having n − k queues. Then es-
sentially, we will show that the total number of these bad
injections over all time t0 ≤ t ≤ t1 is bounded by some num-
ber which is independent of t. We now consider four cases
to obtain the required t∗.

• Case 1 If there are no bad injections to small queues
for all time t0 ≤ t ≤ t1, then for all t0 ≤ t ≤ t1, the sizes of
small queues are bounded by S1 = B(n− k, Fk+1, 0) by the
induction hypothesis. Hence the potential of all the small
queues at time t1 is at most εH1 = (n − k)S2

1 . By Lemma
1 and the definition of potential, the decrease of potential
due to a injection to a tall queue or a transmission from a
tall queue to a small queue at time t1 is at least ε(Fk −S1).
Note also that from the definition of Fk,

Fk ≥ H1 + S1 +
P0

ε
.

Therefore ε(Fk − S1) ≥ εH1 + P0, which means that the
decrease of potential due to an injection to a tall queue or a
transmission from a tall queue to a small queue at time t1
is bigger than the potential of all the small queues at time
t1 plus P0. Note that maximum possible increase of poten-
tial induced by injections during the time [t1, t1 + ω − 1] is
bounded by P0, and that all the packet movement associated
with the injection to a tall queue at time t1 occurs no later
than t1 + ω− 1. In addition, since there was no injection to
any of the tall queues during t0 ≤ t ≤ (t1− 1), the potential
of the tall queues is non-increasing for t0 ≤ t < t1. Hence,
by letting t∗ = t1 + ω − 1, we obtain that P (t∗) ≤ P (t0).

We now consider the cases when there are some bad in-
jections to small queues. Let 0 ≤ r1 ≤ r2 ≤ . . . rk−1 be the
sorted list of (q1 − q2), (q2 − q3), . . . , (qk−1 − qk).

• Case 2 Suppose that r1 > H1. Then by Lemma 1, any
transmission between two tall queues at some time t0 < t ≤
t1 will make the potential decrease more than εH1. Let t∗

be the smallest time t∗ > t0 so that there is a transmission
between two tall queues at time t∗. Note that for all time
t0 ≤ t ≤ t∗, the sizes of the small queues are bounded by
S1 = B(n− k, Fk+1, 0) by the induction hypothesis and the
potential of the small queues is bounded by εH1 = (n−k)S2

1 .
Then from the same argument as the first case, P (t∗) ≤
P (t0).

• Case 3 Suppose that there is 1 ≤ ` ≤ k − 1 such that
for all 1 ≤ j ≤ `, rj ≤ Hj , and r`+1 > H`+1. We will
show that in this case the potential of all the small queues
is bounded by εH`+1. We may assume that bad injections to
small queues induce transmissions just between neighboring
tall queues. Note that the number of bad injections to small
queues during some period of time is bounded by the total
number of transmissions between tall queues during that
period of time.

We say an edge ej = (Qj , Qj+1) between two neighboring
tall queues is a tall edge if qj − qj+1 > H`+1 and a small
edge otherwise. Then, we can obtain the following Lemma,
whose proof is presented after the proof of Lemma 5.

Lemma 6. Let r1, r2 . . . , r` be the sizes of the small edges
at time t0 and assume that for 1 ≤ j ≤ `, rj ≤ Hj. If there
is no transmission via tall edges for t0 ≤ t < t′ and all the
transmissions occur via small edges, then the total number
of packet transmissions via small edges during that period of
time is bounded by

`(r1 + r2 . . . + r`)
2 ≤ `(H1 + H2 . . . + H`)

2.

• Case 3-1 Suppose there are no transmissions via tall
edges for all time t0 ≤ t ≤ t1. Then by Lemma 6, the
total number of bad injections to the small queues during
t0 ≤ t ≤ t1 is bounded by `(H1 + H2 . . . + H`)

2. Hence by
So, for all time t0 ≤ t ≤ t1, the sizes of small queues are
bounded by S`+1 = B(n − k, Fk+1, `(H1 + H2 . . . + H`)

2)
by the induction hypothesis. Hence the potential of all the
small queues at time t1 is at most

εH`+1 = (n− k)S2
`+1.

Therefore the potential for the tall queues is non-increasing
for t0 ≤ t ≤ t1.

By Lemma 1, the decrease in potential due to the injection
to a tall queue or the transmission from a tall queue to a
small queue at time t1 is at least ε(Fk − S`+1). Note that
from the definition of Fk,

ε(Fk − S`+1) ≥ εH`+1 + P0.

This implies that the potential decrease at time t1 is more
than the potential of all the small queues at t1 plus P0.
Hence, by letting t∗ = t1 + ω − 1, we obtain that P (t∗) ≤
P (t0).

• Case 3-2 If there is a transmission via some tall edge
for some time t0 < t ≤ t1, let t∗ be the smallest such t. Then
similarly, by Lemma 6, the total number of bad injections



to the small queues during t0 ≤ t ≤ t∗ is bounded by `(H1 +
H2 . . . + H`)

2. Hence the sizes of the small queues during
this time interval are bounded by S`+1 by the induction
hypothesis and the potential of all the small queues at time
t∗ is at most εH`+1. In addition, note that during t0 ≤ t ≤
t∗, for any tall edge ej = (Qj , Qj+1), qj is non-decreasing
and gj+1 is non-increasing. So for t = t∗, qj − qj+1 ≥ H`+1.
Hence, a transmission via a tall edge at time t∗ will make the
potential decrease by at least εH`+1, which is more than the
potential of all the small queues at time t∗. The potential
for the tall queues is non-increasing for t0 ≤ t < t∗. Hence,
we obtain that P (t) ≤ P (t∗).

• Case 4 The only remaining case is when r` ≤ H` for all
1 ≤ ` ≤ k−1. Then by Lemma 6 and the induction hypoth-
esis, for all time t0 ≤ t ≤ t1, the sizes of the small queues are
bounded by Sk = B

�
n− k, Fk+1, (k − 1)(H1 + H2 . . . + Hk−1)

2
�
.

Hence the potential of all the small queues at time t1 is at
most εHk = (n− k)S2

k. Then by Lemma 1, the decrease in
potential due to the injection to a tall queue or the trans-
mission from a tall queue to a small queue at time t1 is at
least ε(Fk −Sk) = εHk + P0, which is more than the poten-
tial of all the small queues at time t1 plus P0. The potential
of the tall queues is non-increasing for t0 ≤ t < t1. Hence,
by letting t∗ = t1 + ω − 1, we obtain that P (t∗) ≤ P (t0).

Note that in all the above four cases, for t0 ≤ t ≤ t∗, the
sizes of the small queues are bounded by Sj + ωn for some
1 ≤ j ≤ k. Therefore they are bounded by Fk.

Proof of Lemma 6. Let ej1 , ej2 , . . . ej` be the set of small
edges, where j1 < j2 < . . . < j`. For 1 ≤ i ≤ `, let si be
(qji−qji+1). Hence {si}1≤i≤` is a permutation of {ri}1≤i≤`.

Recall that the sizes of the queues at time t0 are non-
increasing with respect to their indices. Moreover, note that
if ji+1− ji ≥ 2 for some i, then any packet p that was origi-
nally located at Qm, with m ≤ ji + 1 cannot move to Qji+2

for all time t0 ≤ t ≤ t′. Hence we can consider each subset of
consecutive small edges separately. For example if j1 . . . j`

are 2,3,4,7,8, then we will consider 2,3,4 and 7,8 separately.
Suppose that j1, j2 . . . , jm are consecutive integers. Then,
consider the following potential function grounded at level
qjm+1.

R(t) =

mX
i=1

(qt
ji
− qt

jm+1)
2.

Then, R(t) strictly decreases at least by 1 for each packet
transmission via one of the edges ej1 , . . . ejm . Hence the to-
tal number of packet transmission via ej1 , . . . ejm for time
t0 ≤ t ≤ t′ is bounded by R(t0). Note that R(t0) ≤
m(s1 + s2 + . . . + sm)2. A similar argument holds for other
consecutive values of ji’s, and the sum of the R(t0) val-
ues for each of these consecutive small edges is at most
`(s1 + s2 . . . + s`)

2 ≤ `(H1 + H2 . . . + H`)
2. Hence the

total number of transmissions via small edges during time
t0 ≤ t ≤ t′ is bounded by `(H1 + H2 . . . + H`)

2.

5. EXTENSIONS TO ARBITRARY LINK
CAPACITIES AND PACKET SIZES

A similar argument to the proof of Theorem 3 can be
applied to show that Max-Weight is stable in the arbitrary
link capacity and packet size case. In this case, let t1 be the

first time after t0 such that the total data injected to tall
queues during [t0, t1] plus the total data transmitted from
tall queues to small queues during [t0, t1] is at least 1. We
consider those injections and transmissions as bad injections
to small queues. Then using a similar inductive argument,
we can show that for all t ≥ 0, P (t) is bounded above by
some value depending on P (0) and independent of t. This
shows the stability of Max-Weight for this case.

6. Max-Weight UNDER CRITICAL LOAD
IN STATIC NETWORKS

All of the results in the previous sections have been for
dynamic networks under subcritical load. In this section
we study the stability of Max-Weight when the load is
critical. We are unfortunately unable to resolve this issue in
the most general case of dynamic graphs with adversarially
generated traffic. However, we show that Max-Weight is
stable for the special case in which the network is static and
the traffic generated is identical in each time slot. We believe
that this result is of interest for two reasons. First, as far as
we are aware it is the first result to show stability of Max-
Weight in a critically loaded context. Second, it allows
us to tighten the analysis of the running time bound of the
Awerbuch-Leighton algorithm for multicommodity flow. In
particular, for a fixed instance of the problem it allows us
to approximate the value of the optimal solution to within
a factor (1− ε) in time O( 1

ε
). We discuss this in more detail

in Section 7.
The situation that we study in this section is the follow-

ing. We have a fixed set of commodities indexed by i. Each
commodity has a source node si, a destination node di and
an injection rate ρi. At each time step data of size ρi is
injected at node si with destination di. We assume in ad-
dition that each edge (v, u) has a fixed capacity cuv. The
injection rates and edge capacities are such that the network
is critically loaded. In particular we assume that the injec-
tions conform to the definition of an A(1, 0)-adversary. For
convenience, we also assume that at time 0, all queues are
empty.

We remark that there is a close connection between this
scheduling problem and the following multicommodity flow
(MCF) problem,

max λ

subject to
X

i

xi
vu ≤ cvu ∀v, u

X
u

(xi
vu − xi

uv) =

8<: λfi v = si

−λfi v = di

0 o.w.
∀i.

Let λ∗ be the optimal value of this problem. Without loss
of generality, all of the cuv and fi are integers (by scaling).
Moreover, it is well known (see e.g. [12]) that if L is the
number of bits required to represent the problem then we
can scale all capacities by at most poly(L) so that λ∗ is an
integer multiple of four lying between 0 and 2L.

It is immediate from the definition of criticality that if
ρi = λfi, the network is subcritically loaded if and only if
λ < λ∗, critically loaded if and only if λ = λ∗ and supercrit-
ically loaded if and only if λ > λ∗. Moreover, the following
lemma states that if the Max-Weight algorithm keeps the



system stable then we can derive a solution to the MCF
problem.

Lemma 7. Suppose that we inject data into each commod-
ity at rate λfi. If we run the Max-Weight algorithm for
time n2B/ε and the total amount of data in any queue is
never more than B, then from the evolution of the system we
can derive a solution to the MCF problem of value (1− ε)λ.

Proof. For each edge (u, v), let Xi
uv be the number of

commodity i packets that traversed edge (u, v) during the
algorithm and that reached their destination. (We can record
this number by having each packet keep track of how many
times it crosses each edge and then recording these num-
bers whenever a packet reaches its destination.) Let xi

uv =
Xi

uvε/n2B. Since data of size at most cuv crosses edge (u, v)
during each time step, we must have

P
i xi

uv ≤ cvu. Since at
the time n2B/ε the total number of packets that can remain
in the network is n2B and since we are only counting the
number of packets that reach their destination, the xi

uv vari-
ables must represent a flow of size (ε/n2B)(n2B((λfi/ε) −
1)) ≥ λfi(1 − ε). In other words, we have derived a solu-
tion to the multicommodity flow problem of value at least
(1− ε)λ.

We now present the main result of this section.

Theorem 8. For static networks and static injection pat-
terns, the Max-Weight protocol is stable even at critical
loads (i.e. when ε = 0.)

We remark that for ease of analysis we actually consider
a slightly different version of the Max-Weight algorithm
than the one described in the Introduction. Specifically, we
no longer require that qt

v,d − qt
u,d is greater than ∆ · cmax

when deciding whether to send data from Qv,d to Qu,d.

Proof. We utilize techniques that were introduced in
[19, 20] to analyze the performance of Max-Weight un-
der “heavy traffic”. Let rvu,d(t) represent the number of
packets transmitted from Qv,d to Qu,d during time step t.
Let Υ be the set of all vectors that represent the feasible
transmissions of packets between queues, i.e.,

Υ = {(. . . , rvu,d, . . .) :
X

d

rvu,d ≤ cvu, rvu,d ∈ Z}.

For any vector (. . . , rvu,d, . . .) in Υ, let ωv,d =
P

u(rvu,d −
ruv,d), i.e. ωv,d is equivalent to the change qt

v,d − qt+1
v,d when

the packets move according to the rvu,d and qt
v,d is suffi-

ciently large. Let Ω be the set of all such “service” vectors.
Note that if the queues are continually served according to
ω = {. . . ωv,d . . .} ∈ Ω then the long-term drift of queue Qv,d

is av,d−ωv,d, where av,d is the exogenous rate at which data
is injected into queue Qv,d (i.e. av,d =

P
i∈D(v) ρi, where

D(v) is the set of demands whose source node is v). We
define Ω̄ = conv(Ω) and V = conv{ω − a : ω ∈ Ω} (where
conv{·} denotes convex hull). From now on we shall work
with vectors that are indexed by each queue. Note that such
vectors have length n2.

The geometry ofV
In order to prove our stability result we shall need to con-
sider the geometry of the rate region V and some other re-
lated regions. First note that V is convex polyhedral set.
The fact that the system is critically loaded implies that the

origin is on the boundary of V . We use C to denote the
“normal cone” to V at the origin, defined by

C = {γ : (ω − a) · γ ≤ 0 ∀ω ∈ Ω}.
Without loss of generality, we can assume that for each
queue, there exists a demand i such that the queue is reach-
able from the source node of demand i. This means that for
a sufficiently small δ, for any vector x that lies in the nega-
tive orthant such that ||x|| ≤ δ, we can make the queue-size
vector grow with positive drift −x and so x ∈ V . This in
turn implies,

Lemma 9. The normal cone C lies in the positive or-
thant.

Let ν be any unit vector that lies in the relative interior of
C, i.e. the interior of C with respect to the smallest subspace
of Euclidean space that contains C. The vector ν has the
property that if ω ∈ Ω̄ and ν ·(ω−a) = 0 then γ ·(ω−a) = 0
for all γ ∈ C. Let α = min{ν ·(a−ω) : ω ∈ Ω, ν ·(a−ω) > 0}.
Since Ω is finite this minimum exists.

We now let W equal the set of vectors in V that are or-
thogonal to a vector in C and cannot be extended while re-
maining in V , i.e. W = {ω− a : ω ∈ Ω̄, ∃γ ∈ C γ · (ω− a) =
0, ∀δ > 0 (1 + δ)(ω − a) 6∈ V }. Let µ = minω−a∈W ||ω − a||.
The polyhedral nature of V means that µ > 0. Let q(t) rep-
resent the vector of queue sizes, let || · || denote Euclidean
distance and let q∗(t) be the closest point to q(t) that lies
in the normal cone C. The distance from q(t) to the cone
is defined to be ||q(t) − q∗(t)||. By projecting the vector
q(t)− q∗(t) onto V it is not hard to see that,

Lemma 10. ||q(t)−q∗(t)|| = maxω−a∈W (q(t)·(ω−a))/||ω−
a||.
Stability proof
We now return to the proof of stability. Let ω(t) be the
vector in Ω that represents how the queues change at time
t under the Max-Weight algorithm. Let Z1 = n4(cmax)

2.
(Recall that cmax = max cuv equals the maximum link ca-
pacity in the network.

Lemma 11. q(t) · ω(t) ≥ maxω∈Ω̄ q(t) · ω − Z1.

Proof. First note that since the maximum occurs at a
vertex of Ω̄, we have that maxω∈Ω̄ q(t) · ω = maxω∈Ω q(t) ·
ω, i.e. we can focus on integral service vectors that could
actually be realized by a scheduling algorithm. Recall that
if ruv,d represents the amount of data that is scheduled from
Qv,d to Qu,d at time t then ωv,d =

P
u(rvu,d− ruv,d) and so

q(t) · ω(t) =
X
uv,d

ruv,d(qt
u,d − qt

v,d).

Therefore we can view the Max-Weight algorithm as try-
ing to maximize the dot-product q(t) · ω(t). However, the
reason that we do not always utilize the service vector ω∗ =
arg maxω∈Ω q(t) ·ω is that we also have a constraint that the
queues never go below zero, i.e.

P
v ruv,d(t) ≤ qt

u,d. (Note
that we are considering a model in which data is removed
from queues at the beginning of the time step and then
added to queues at the end of the time step.) However,
one feasible solution involves taking the service vector ω∗

and then creating a new service vector ω′ by ignoring any
queue for which

P
v ruv,d > qt

u,d. Since
P

v ruv,d ≤ ncmax



we have that q(t) · ω′ ≥ q(t) · ω∗ − n2(ncmax)
2. Therefore,

since Z1 = n4(cmax)
2 and ω(t) is the feasible service vector

that achieves the maximum dot-product with q(t) we have,

q(t) · ω(t) ≥ q(t) · ω′ ≥ q(t) · ω∗ − Z1.

Let Z2 = 4n4(cmax)
2. The next lemma is immediate from

the definitions,

Lemma 12. ||ω(t)− a||2 ≤ Z2.

We now show that if q(t) is sufficiently far from the cone
C, then q(t + 1) has to be closer to C. (Cf. [20].)

Lemma 13. ||q(t + 1) − q∗(t + 1)||2 ≤ ||q(t) − q∗(t)||2 −
µ||q(t)− q∗(t)||+ Z1 + Z2.

Proof. An intuitive explanation of this result is that
q(t + 1) · q∗(t) ≥ q(t) · q∗ and if q(t) is far from C then
||q(t + 1)|| < ||q(t)||. Hence q(t + 1) is shorter than q(t) but
its dot-product with q∗(t) is larger and so it must be closer
to the cone.

More formally, we know by the definition of q∗(t+1) that
||q(t+1)−q∗(t+1)|| ≤ ||q(t+1)−q∗(t)||. From the manner
in which the queue vector evolves we have,

||q(t + 1)− q∗(t)||2
= ||q(t)− q∗(t)||2 − q(t) · (ω(t)− a) +

q∗(t) · (ω(t)− a) + ||ω(t)− a||2.
By the definition of C we know q∗(t) · (ω(t) − a) ≤ 0. By
Lemma 11, q(t) · (ω(t) − a) ≥ maxω∈Ω̄ q(t) · (ω − a) ≥
maxω−a∈W q(t) · (ω−a). By Lemma 10 there exists a vector
ω−a ∈ W such that q(t) · (ω−a) = ||ω−a||||q(t)− q∗(t)|| ≥
µ||q(t)−q∗(t)||. Therefore q(t)·(ω(t)−a) ≥ µ||q(t)−q∗(t)||−
Z1. By Lemma 12, ||ω(t)− a||2 ≤ Z2. Putting all these in-
equalities together,

||q(t + 1)− q∗(t + 1)||2
≤ ||q(t + 1)− q∗(t)||2
≤ ||q(t)− q∗(t)||2 − µ||q(t)− q∗(t)||+ Z1 + Z2.

Lemma 14. For all t, ||q(t)− q∗(t)||2 ≤ Z1 + Z2 + (Z1 +
Z2)

2/µ2.

Proof. By the previous lemma, if ||q(t)−q∗(t)|| ≥ (Z1 +
Z2)µ then ||q(t + 1)− q∗(t + 1)||2 ≤ ||q(t + 1)− q∗(t + 1)||2
and if ||q(t)−q∗(t)|| < Z1 +Z2 then ||q(t+1)−q∗(t+1)||2 ≤
||q(t)− q∗(t)||2 + Z1 + Z2. The result follows.

Lemma 15. q(t+1)·ν ≥ q(t)·ν. Moreover, if q(t+1)·ν >
q(t) · ν then q(t + 1) · ν ≥ q(t) · ν + α.

Proof. Follows from the definition of C, the definition
of α and the fact that

q(t + 1) · ν = (q(t) + a− ω(t)) · ν
= q(t) · ν + (a− ω(t)) · ν.

Following [19] we now define another useful quantity, the
invariant point. This is denoted by q∗∗(t) and is defined
to be the vector q that minimizes ||q||2 subject to the con-
straints q · γ ≥ q(t) · γ for all γ ∈ C.

Lemma 16. q∗∗(t) = q∗(t).

Proof. If q(t) lies in C then the result is immediate. If
q(t) 6∈ C then the result follows from the fact that for any
γ ∈ C, (q(t) − q∗(t)) · (γ − q∗(t)) ≤ 0. In particular, this
property implies that q∗(t) does satisfy all constraints q ·γ ≥
q(t) · γ, and for any vector q satisfying these constraints,
q · q∗(t) ≥ q(t) · q∗(t) ≥ ‖q∗(t)‖2. This in turn implies that
||q||2 ≥ ||q∗(t)||2.

Lemma 17. If q∗(t + 1) 6= q∗(t) then q(t + 1) · ν ≥ q(t) ·
ν + α.

Proof. If q∗(t + 1) 6= q∗(t) then since q∗(t) = q∗∗(t),
there must exist some γ ∈ C such that q(t + 1) · γ > q(t) ·
γ. Recall that because ν is in the relative interior of C,
if ν · (a − ω(t)) = 0 then γ · (a − ω(t)) = 0 which implies
that q(t + 1) · γ = q(t) · γ. Therefore, we must have that
q(t + 1) · ν > q(t) · ν and so by Lemma 15, q(t + 1) · ν ≥
q(t) · ν + α.

We can now prove Theorem 8. By an argument almost
identical to the proof of Lemma 13, ||q(t+1)||2 ≤ ||q(t)||2 +

(Z1 + Z2). Therefore ||q(t)|| ≤
p

t(Z1 + Z2) which implies

that q(t) · ν ≤
p

t(Z1 + Z2) since ν is a unit vector.
Let S be the maximum number of integer lattice points

that can lie in an n2 dimensional ball of radius (Z1 + Z2 +

(Z1 + Z2)
2/µ2)1/2. Let T be an integer such that Tα/S >p

T (Z1 + Z2), e.g. T = 1 + dS2(Z1 + Z2)/α2e. Since q(T ) ·
ν ≤

p
T (Z1 + Z2) and whenever q(t) · ν increases it must

increase by at least α, there must be a subinterval of length
S in the interval [0, T ] during which q(t)·ν remains constant.
By Lemma 17, q∗(t) remains constant during this interval.
However, since q(t) remains within a ball of radius (Z1 +

Z2+(Z1+Z2)
2/µ2)1/2 centered at q∗(t) during this interval,

and this ball has at most S integer points, the q(t) vector
must repeat itself during the interval. Since the system is
deterministic, the vector must continue to cycle within this
ball. Hence for all t the queue vector satisfies ||q(t)|| ≤ B :=p

T (Z1 + Z2). This in turn implies that qt
v,d ≤ B for all

t, v, d.

Subcritically loaded case.As mentioned in the Introduc-
tion, bounds on queue size in the case that the network is
subcritically loaded are well-known. We now give an explicit
bound that will be useful in the next section and which
can be derived using an argument similar to the proof of
Lemma 1.

Lemma 18. Suppose that the network is subcritically loaded,
i.e. ε > 0. Then under Max-Weight the maximum queue
size is at most Z3(ε) := 2n(Z1 + Z2)/ε.

7. APPLICATIONS TO
MULTICOMMODITY FLOW

We now consider the multicommodity flow problem pre-
sented at the beginning of Section 6 and show how the sta-
bility of Max-Weight in static networks when ε = 0 implies
a running time for fixed instances that is an improvement on
the analysis given by Awerbuch and Leighton in [7, 8]. Let
λ∗ be the optimal value of problem. If λ∗ is known they show
how to use the Max-Weight protocol to obtain a solution



of value at least (1− ε)λ∗ in time O(1/ε2). We improve this
running time to O(1/ε). Moreover, we then show that by
using binary search we can find a solution of value at least
(1− ε)λ∗ in time O( 1

ε
), even if we do not know the value of

λ∗. We remark that many of the well-known iterative algo-
rithms for multicommodity flow (e.g. Garg-Könemann [11],
Klein et al. [13] and references therein) have a running time
of the form Ω(1/ε2). Moreover, Klein and Young showed in
[14] that for a large class of such algorithms, the running
time is Ω(1/ε2). However, their example is not directly ap-
plicable to our result since the size of their instances grows
with ε. We are more interested in the dependence of the
running time on ε for fixed instances. In [9], Bienstock and
Iyengar present an iterative algorithm with a running time of
O( 1

ε
log 1

ε
). However, their algorithm is more complex than

the Max-Weight protocol that is the focus of our paper.

Theorem 19. Suppose that λ∗ is known. Then the Max-
Weight protocol finds a solution to the MCF problem of
value at least (1− ε)λ∗ in time O(1/ε).

Proof. We run the Max-Weight protocol with injec-
tion rate ρi = λ∗fi for all i. The analysis in Section 6 im-
plies that qt

v,d ≤ B for all t, v, d. By Lemma 7 after n2B/ε
steps we have a solution to the MCF problem of value at
least (1− ε)λ∗.

We remark that although the bound B does not depend on
ε, it is difficult to calculate explicitly since it depends on the
quantities α and µ. However, we do not need to calculate B
in advance. After each time step we can calculate the value
of the current solution since it depends solely on how much
data has reached its destination. Therefore the “stopping
condition” for the algorithm is when we have a solution of
value at least (1 − ε)λ∗. The implication of Theorem 19 is
that this condition is satisfied in time O(1/ε).

Now suppose that λ∗ is not known a priori. In this case
we can still obtain a solution of value at least (1 − ε)λ∗ in
time O(1/ε). Recall that L is the number of bits required to
represent the MCF problem. In the full version of the paper
we show,

Theorem 20. We can construct a binary search proce-
dure using the Max-Weight protocol that determines λ∗ in
time O(LZ3(2

−L)). By Theorem 19 this implies that for a
fixed instance of the MCF problem, the Max-Weight pro-
tocol can find a solution of value at least (1 − ε)λ∗ in time
O(1/ε).

Proof. By the remarks at the beginning of this section,
we can assume that λ∗ is an integer multiple of four lying
between 0 and 2L. We run a binary search procedure to
find the maximum value of k ∈ Z such that if we run the
Max-Weight protocol with injection rates ρi = (4k + 2)fi,
after time Z3(2

−L) we have found a solution to the MCF
problem of value at least (1 − 2−L)(4k + 2). Let k∗ be the
maximum such k. Since we have found a solution of value
(1 − 2−L)(4k + 2) ≥ 4k + 1, we know that λ∗ ≥ 4k∗ + 4
by our assumption that λ∗ is a multiple of four. However,
if λ∗ ≥ 4k∗ + 8 then by Lemma 18 if we run the Max-
Weight protocol with injection rates ρi = (4(k + 1) + 2)fi,
after time Z3(2

−L) we should have found a solution to the
MCF problem of value at least (1−2−L)(4(k+1)+2). This
contradicts the optimality of k∗. Hence λ∗ = 4k∗ + 4. By
the properties of binary search the number of times that we

must run the Max-Weight protocol to find λ∗ is O(L) and
so the total running time for this procedure is O(LZ3(2

−L).
By Theorem 19 we now can run the Max-Weight proto-

col with injection rates ρi = λ∗fi to obtain a solution to the
MCF problem of value at least (1−ε)λ∗ in time O(1/ε). For
a fixed MCF instance, LZ3(2

−L) is a constant and so the
total running time taken to find the solution is O(1/ε).

8. CONCLUSIONS
In this paper we have shown stability of the Max-Weight

routing and scheduling protocol for the case of adversarial
multicommodity traffic in dynamic networks at subcritical
loads and the case of static multicommodity traffic in static
networks at critical loads. As far as we are aware, the sta-
bility of Max-Weight has not been previously addressed
in these contexts. A number open questions remain. First,
is the Max-Weight protocol stable at critical loads when
either the network or the traffic patterns change over time?
The analysis of Section 6 cannot be applied here since the
rate region V and the normal cone C could change over
time. Second, for static networks at critical loads, can we
obtain a bound on queue size that is polynomial in the size
of the network. (Note that the bound obtained in Section 6
depends on the quantity S that is exponential in the size
of the network.) We believe that it is of interest to resolve
this question since it will determine the extent to which our
O(1/ε) bound on the time required to solve the multicom-
modity flow problem is better in practice than the previous
O(1/ε2) bound due to Awerbuch and Leighton.
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Appendix: Proof of Lemma 1
Lemma 1. Consider the Max-Weight(β) protocol in ad-

versarial dynamic graphs with multicommodity demands for
ε > 0. Then for each injection of packet p at time t having
size `p, we can associate this injection with packet move-
ments along its corresponding simple path so that the sum
of potential changes due to these movements are at least
− ε

1−ε
`p(β + 1)qβ + `pO(qβ−1), where q is the height of the

queue where the packet is injected. Moreover, all these changes
occur in a window of size ω. Hence there is a constant q∗ de-
pending on n, ω and ε, so that if q ≥ q∗ the sum of potential
changes due to the injection is less than −ε`pqβ.

Recall that from the definition 1, the adversary can asso-
ciate with each packet p ∈ It, a simple path Γp from sp to
dp such that for all e ∈ E,X

p∈I[t,t+ω−1],e∈Γp

`p ≤ (1− ε)

t+ω−1X
t′=t

ce(t
′).

For each packet p ∈ It we will associate some portion of
capacities of edges in Γp, cp = {dp,e(t

′)|e ∈ Γp, t′ ∈ [t −
ω + 1, t + ω − 1]} as follows. Let W be the time interval
[jω, (j + 1)ω − 1] for some integer j ≥ 0. Let p1, . . . pm be

the packets in IW . We know that

mX
i=1,e∈Γpi

`pi ≤ (1− ε)
X

t′∈Wj

ce(t
′).

First, for p1 and for each e ∈ Γp1 , we can define dp1,e(t
′)

for each t′ ∈ Wj so that

0 ≤ dp1,e(t
′) ≤ ce(t

′) and
X

t′∈Wj

dp1,e(t
′) =

`p1

1− ε
.

Then, for each e ∈ E and t ∈ Wj , let c1
e(t

′) = ce(t
′) −

dp1,e(t
′). Then we obtain that

mX
i=2,e∈Γpi

`pi ≤ (1− ε)
X

t′∈Wj

c1
e(t

′).

Similarly for p2 and for each e ∈ Γp1 we can define dp2,e(t
′)

for each t′ ∈ Wj so that

0 ≤ dp2,e(t
′) ≤ c1

e(t
′) and

X
t′∈Wj

dp2,e(t
′) =

`p2

1− ε
.

By continuing this process, we can define dpi,e(t
′) for each

e ∈ Γpi and t′ ∈ Wj so that

0 ≤ dpi,e(t
′) ≤ ci−1

e (t′) and
X

t′∈Wj

dpi,e(t
′) =

`pi

1− ε
.

Recall that cmax is the maximum possible edge capacity.
Consider an edge e = (v, u) ∈ E and suppose that e has
capacity ce(t) at time t, and qt

v,d ≥ qt
u,d + ce(t). Then the

potential change due to transmission via e at time t is

(qt
u,d + `p)β+1 − (qt

u,d)β+1 + (qt
v,d − `p)β+1 − (qt

v,d)β+1

= ce(t)(β+1)
�
(qt

u,d)β − (qt
v,d)β

�
+ce(t)O

�
(qt

u,d)β−1 + (qt
v,d)β−1

�
.

Note that this is also true when |qt
u,d − qt

v,d| < ce(t).
Hence, when a dp,e(t) amount of edge capacity of e at time
t is assigned to an injected packet p, we can consider that a
dp,e(t)(β+1)

�
(qt

u,d)β − (qt
v,d)β

�
+dp,e(t)O

�
(qt

u,d)β−1 + (qt
v,d)β−1

�
amount of potential change is induced by the packet p.

Now, for t, t′ ∈ W , |qt
u,d − qt′

u,d| ≤ ncmaxω since at each
time slot, at most cmax amount of packet can move along an
edge connecting u. Hence by considering ω and n and cmax

as constants, we obtain that for any t, t′ ∈ W ,

(qt′
u,d)β = (qt

u,d)β + O
�
(qt

u,d)β−1
�

.

Suppose that a packet p with capacity `p is injected at a
node v0 at time t0 ∈ W . Let v0, v1 . . . vm = d be the cor-
responding simple path given by adversary. Then, the in-
crease of potential due to the direct injection of p is `p(β +

1)(qt0
v0,d)β + `pO((qt0

v0,d)β−1). Hence the total change of po-
tential induced by this injection is,

`p(β + 1)(q
t0
v0,d)

β
+ `pO

�
(q

t0
vi,d)

β−1
�
−

m−1X
i=0

`p(β + 1)

1− ε

���(qt0
vi,d)

β − (q
t0
vi+1,d)

β
+ O

�
(q

t0
vi,d)

β−1
+ (q

t0
vi+1,d)

β−1
����

≤ − ε

1− ε
`p(β + 1)(q

t0
v0,d)

β
+ `pO

�
(q

t0
v0,d)

β−1
�

.

Hence there is a constant q∗, depending on n, ω and ε,
so that if q ≥ q∗ the sum of potential changes due to the
injection is less than −ε`pqβ .


