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ABSTRACT
The appearance of web-based crowdsourcing systems gives
a promising solution to exploiting the wisdom of crowds ef-
ficiently in a short time with a relatively low budget. De-
spite their efficiency, crowdsourcing systems have an inher-
ent problem in that responses from workers can be unreli-
able since workers are low-paid and have low responsibility.
Although simple majority voting can be a solution, various
research studies have sought to aggregate noisy responses
to obtain greater reliability in results through effective tech-
niques such as Expectation-Maximization (EM) based al-
gorithms. While EM-based algorithms get the limelight in
crowdsourcing systems due to their useful inference tech-
niques, Karger et al. [8, 9] made a significant breakthrough
by proposing a novel iterative algorithm based on the idea
of low-rank matrix approximations and the message passing
technique. They showed that the performance of their itera-
tive algorithm is order-optimal, which outperforms majority
voting and EM-based algorithms. However, their algorithm
is not always applicable in practice since it can only be ap-
plied to binary-choice questions. Recently, they devised an
inference algorithm for multi-class labeling [10], which splits
each task into a bunch of binary-choice questions and ex-
ploits their existing algorithm. However, it has difficulty
in combining into real crowdsourcing systems since it over-
exploits redundancy in that each split question should be
queried in multiple times to obtain reliable results.

In this paper, we design an iterative algorithm to infer true
answers for multiple-choice questions, which can be directly
applied to real crowdsourcing systems. Our algorithm can
also be applicable to short-answer questions as well. We an-
alyze the performance of our algorithm, and prove that the
error bound decays exponentially. Through extensive exper-
iments, we verify that our algorithm outperforms majority
voting and EM-based algorithm in accuracy.
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1. INTRODUCTION
Crowdsourcing has become one of the cornerstones of re-

search in the development of human computation-based in-
telligence systems. New web-based services such as Amazon
Mechanical Turk have arisen and become popular, as they
can provide ideal solutions, gathering enormous responses
from widespread crowds in a short time with a relatively
low budget [13, 14]. For example, ImageNet, a large-scale
image database, was a successful project that exploited the
idea of crowdsourcing to label 3.2 million images hierarchi-
cally [3].

Despite the innovative framework of crowdsourcing sys-
tems, responses from workers can be unreliable [7, 12, 17,
18], since workers hired by crowdsourcing systems are low-
paid and have low responsibility. Therefore, extensive works
have been proceeded to find reliable solutions that infer the
true answers from noisy responses. One natural method
for aggregating responses is majority voting. But due to
its simplicity, Expectation-Maximization (EM)-based algo-
rithms have become popular. Since EM-based algorithms
can deal with inference problems with latent variables and
unknown model parameters, researchers applied the EM al-
gorithm to proper graphical models for crowdsourcing sys-
tems, and showed that their results generally outperform
those of majority voting [16, 20, 21]. Recently, Karger et al.
[8, 9] made a significant breakthrough by proposing a novel
iterative algorithm based on the idea of low-rank matrix
approximations and the message passing technique. They
showed that the performance of their iterative algorithm is
order-optimal, which outperforms majority voting and EM-
based algorithms.
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Major research studies in this field have concentrated on
cases with binary answers, yes (+1) or no (-1) [9, 21]. One
example of such a binary case would be when workers have
to determine whether a given image is suitable for children.
However, real crowdsourced data posted on Amazon Me-
chanical Turk usually consists of multiple-choice questions
and short-answer questions, so more general inference tech-
niques should be employed.

In this paper, we focus on a more general structure for
crowdsourcing systems that can be applied to multiple-choice
questions. Note that we consider multiple-choice questions
in which all choices are independent from each other. Inde-
pendent multiple choices differ from linearly ordered choices
which are commonly used in rating systems. For example,
classifying types of cancers in patients is appropriate for an
independent multiple-choice case, whereas determining the
stage of a specific cancer of a patient is adequate for a lin-
early ordered choices case. We are currently focusing on the
former case, which has greater applicability in D-ary classifi-
cation problems. Moreover, we do not make a restriction on
variation in the number of choices for each multiple-choice
question. In addition, we suggest a method to transform
short-answer questions into several multiple-choice questions
so that our algorithm can be applied.

Our algorithm iteratively computes relative reliability of
each worker in a novel way, where relative reliability is ex-
ploited as a weight of the worker’s responses. Our algorithm
also gets reliable results rapidly with small error compared
to majority voting or EM-based algorithms. One of our main
contributions is the performance guarantee of our algorithm
by proving that the error bound of our algorithm decays
exponentially. An interesting aspect of the error bound is
its dependency on the negative entropy of workers in a per-
spective on information theory. Naturally, it is reasonable
to assume that the true answers can be revealed by how
much information there is in the workers’ responses. We
verify the performance of our algorithm through numerical
experiments on various cases, which is close to that of oracle
estimator. We also verify that our algorithm can infer rela-
tive reliability of workers almost correctly by experiments

Moreover, we addressed a strategy to gain responses with
greater reliability from diligent workers in an adaptive man-
ner. In this strategy, some pilot tasks chosen from whole
tasks can be exploited to assess the expertise of the crowds.
Note that we consider pilot tasks that differ from golden
standard units. The relative reliability of workers can be es-
timated through given pilot tasks by applying our algorithm.
In other words, we can initially assess workers’ reliability
with a small number of tasks, even if their true answers
are unknown. Since the relative reliability of workers are
estimated by managing the number of tasks each worker is
given, we can expect to get responses with greater reliability
for the same budget in an efficient way. Since our algorithm
generally converges rapidly, our work can be combined to the
context of online learning, which is more realistic setting for
crowdsourcing systems.

The paper is organized as follows: We discuss related work
in Section 1.1. In Section 2, we make a setup, and we de-
scribe our algorithm to infer the true answers for multiple-
choice questions in Section 3. Then, we look into some ap-
plications in Section 4 and provide performance guarantees
for our algorithm in Section 5. In Section 6, we present

comparative results through numerical experiments, and we
draw conclusions in Section 7.

1.1 Related Work
A common, intuitive strategy for aggregating responses is

majority voting, which is widely used in real life due to its
simplicity. However, in crowdsourcing systems, this simple
inference technique has several limitations, since it assumes
all workers have an equal level of expertise, and it gives the
same weight to all responses. In general, there are unreliable
workers such as novices or free money collectors, and even
adversarial workers can be shown, so majority voting has
obvious weak points when workers are unreliable [17].

There have been various approaches to trying to improve
the reliability of results from unreliable responses. Two
key ideas are introducing latent variables and estimating re-
sults by an iterative algorithm known as the EM algorithm.
Dawid and Skene [2] exploited these ideas when they devel-
oped a simple probabilistic model using confusion matrices
for each labeler as latent variables. They proposed an it-
erative algorithm based on EM to infer ground truth from
unreliable responses.

Since the EM algorithm has an effective procedure to
evaluate missing or hidden data and performs quite well,
this model has been generalized and extended by several
researchers. The GLAD model [21] combines the implicit
characteristics of tasks and workers. Responses from work-
ers are determined by several factors, such as the difficulty
of the task, the expertise of the labeler, and the true label.
The EM-based model can operate flexibly on various cases
by introducing extra latent variables, which can be repre-
sented as the natural properties of tasks and workers [20].
Another variant proposed by Raykar et al. [16] considers
a proper classifier for crowdsourcing systems, and aims to
learn the classifier and the ground truth together.

Despite its popularity, there are some arguments in ex-
isting EM algorithms. The main thing is lack of intensive
analysis about performance guarantees since their perfor-
mance is only empirically evaluated in most cases. Another
point is that inference techniques based on EM algorithms
are not scalable. If the data size increases, EM-based algo-
rithms become inefficient and degenerate, because their time
and space requirements grow exponentially. Moreover, de-
signing model-based EM algorithms with greater complexity
leads to the introduction of an increased number of latent
variables and model parameters. Apart from the compu-
tational complexity problem, the performance of EM-based
algorithms could degenerate due to the initialization prob-
lem, even though it is designed to be a more complex model.
Alternative approaches have been suggested by Karger et al.
[8] in the context of spectral methods that use low-rank ma-
trix approximations. They treated the data matrix A which
involves workers’ responses perturbed by a random noise.
The true answers can be approximated by a rank-1 matrix,
of which the singular vector reflects the correct answer of the
tasks. When the spectral radius of the signal matrix out-
weighs the spectral radius of the random noise matrix, the
correct answers can be extracted by the singular vector of the
data matrix A. Using the power iteration method, the top
singular vector can be obtained more efficiently compared
to the computation complexity of EM-based algorithms.

They also proposed a novel iterative learning algorithm
[9] that learns the likelihood of candidate answers and the
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reliability of workers. It is inspired by the standard Belief
Propagation (BP) algorithm, which approximates the maxi-
mal marginal distribution of variables. This message passing
algorithm achieves almost the same results as the previous
spectral method, but they provide novel analysis techniques
such as Density Evolution in coding theory to improve the
error bound more tightly, which decays exponentially. Al-
though they did not assume any prior knowledge, Liu et al.
[15] shows that choosing a suitable prior can improve the
performance via a Bayesian approach.

Recently, Karger et al. [10] focused on multi-class la-
beling based on their existing novel algorithms, but their
strategy for multi-class labeling is well suited to the lin-
early ordered choices, not independent multiple choices. By
converting each multiple-choice question into a bunch of
binary-choice questions, they could exploit the existing al-
gorithms to determine true answers of multiple-choice ques-
tions. Although this strategy can be extended to indepen-
dent multiple choices, it overexploits redundancy since each
task should be split and queried in multiple times to obtain
reliable results. Furthermore, in real crowdsourcing systems,
it is natural that workers solve intact multiple-choice ques-
tions rather than split binary-choice questions. Therefore it
has difficulty in combining into real crowdsourcing systems.

On top of the problem inferring the true answers, proper
adaptive strategies are developed to utilize reliable work-
ers when they are reusable. [4, 5, 6, 22] showed that the
performance can be significantly improved through explo-
ration/exploitation approaches.

2. SETUP
In this section, we define some variables and notations for

problem formulation. Consider a set of m tasks, each of
which can be a multiple-choice question that only has one
correct answer. The number of choices for task i is denoted
Di. All tasks are distributed to several workers through a
proper task allocation strategy.

Suppose that n workers participate to perform m tasks.
We consider a probabilistic model to generate responses when
workers face tasks. We assume that a worker j is parame-
terized by a latent variable pj ∈ [0, 1], which represents the
probability of getting a correct answer. In other words, each
worker gives the correct answer with a probability pj and
the wrong answer with probability 1 − pj in the decision-
making process. When a worker gives a wrong answer, we
can assume that the worker has chosen one of distractors uni-
formly at random, so the probability of each wrong choice

is
1− pj
Di − 1

. It is reasonable that this latent variable pj refers

to the reliability of the worker, since it captures the ability
or diligence of the worker.

In the response process, when a worker j solves an as-
signed task i, we define the submitted response ~Aij in vector
form. The response is represented as a Di-dimensional bi-
nary unit vector ~Aij , having 1-of-Di representation in which
the element indicating the chosen answer is equal to 1 and
all other elements are equal to 0. The values of Aijd there-

fore satisfy Aijd ∈ {0, 1} and
∑
dA

ij
d = 1 where Aijd is the dth

component of the response ~Aij . For example, when there are
three choices, the possible answer forms are (1, 0, 0), (0, 1, 0),
and (0, 0, 1). Our goal is to determine the correct answer for
each task by querying and aggregating all the responses from
the workers.

3. ALGORITHM
In this section, we propose our multiple-iterative algo-

rithm with a minimum number of assignments. In advance,
using random regular bipartite graph-generating model, we
emulate a real crowdsourcing system scenario. Then, the
message update rules of our iterative algorithm are explained.
In addition, we propose the generalized iterative algorithm
for general setting such as a adaptive strategy.

3.1 Task Allocation
To design a graph model for a crowdsourcing system, we

use a bipartite graph which consists of two types of node sets.
m tasks are defined as the set of nodes [m] at the left side
of the graph, and n workers are defined as the set of nodes
[n] at the right side respectively. Each edge represents an
assignment between a task and a worker and this is deter-
mined according to the task assignment method. For sim-
plicity, the ith task and the jth worker are denoted as i and
j respectively. Given a bipartite graph G = {[m] ∪ [n], E}
representing the allocation graph between tasks and work-
ers, we connect the edge (i, j) if task i is assigned to worker
j. We decide the task node degree l in proportion to the re-
sources we can spend. In addition, the worker node degree r
is determined by the work capacity that an individual worker
can manage. Since we recruit workers through open-call, the
(l, r) regular bipartite graph is adequate for our setting. To
generate a (l, r) random regular bipartite graph such that
ml = nr, we bring a simple random construction model
known as the pairing model(This is also called a configura-
tion model in [9]). In fact, any arbitrary bipartite graph
instance can be used for task allocation. However, we will
use the pairing model which generates a random bipartite
graph with a local tree-like property. Using this property,
we prove the tight error bounds of our algorithm in Section
5.3.

3.2 Multiple Iterative Algorithm
In this section, we describe the basic operations of our

algorithm and the process of inferring true answers. For each
edge (i, j), the response is denoted as ~Aij ∈ U = {~eu|u ∈
[1 : Di]} which consists of D dimensional binary unit vectors
all of whose components are 0 or 1. To extract the true
answers from the unreliable responses of workers, we propose
an iterative algorithm for multiple-choice questions.

Our algorithm generates two types of messages between
task nodes and worker nodes. The first type is the task
message ~xi→j , which is denoted as a Di dimensional vector.
Each component of this vector corresponds to the likelihood
meaning the possibility being a true answer. The second
type is a worker message yj→i which specifies the reliable
worker j. Since these worker messages are strongly corre-
lated with the reliability pj , our algorithm can assess relative
reliability. Hence, we will empirically verify the correlation
between {yj→i} and {pj} in section 6. The initial messages
of our iterative algorithm are sampled independently from
the Gaussian distribution with unit mean and variance, i.e.,

y
(0)
j→i ∼ N (1, 1). Unlike EM-based algorithms [2, 21], our

approach is not sensitive to initial conditions as long as the
consensus of the group of workers is positively biased. Now,
we define the adjacent set of task i as ∂i and similarly the
adjacent set of worker j is defined as ∂j. Then, at the kth it-
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(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

y

x

z

~1
D

~x
(k)

i′→j

~x
(k)

i′→j

(
~Ai
′j − ~1

D

)

Figure 1: Description of a task message ~x
(k)

i′→j and

a response vector ~Ai
′j, in the message vector space

when ~Ai
′j = (1, 0, 0) and Di′ = 3.

eration, both messages are updated using the following rules:

~x
(k)
i→j =

∑
j′∈∂i\j

~Aij
′
y
(k−1)

j′→i , ∀(i, j) ∈ E (1)

y
(k)
j→i =

∑
i′∈∂j\i

(
~Ai
′j −

~1

D

)
· ~x(k−1)

i′→j , ∀(i, j) ∈ E (2)

At the task message update process shown in (1), our algo-
rithm gives weight to the answer according to the reliability
of a worker. At the worker message update process shown
in (2), it gives greater reliability to a worker who strongly
follows consensus of other workers.

Figure 1 describes two vectors in the message vector space.

As shown above, ( ~Ai
′j− ~1

D
) represents the difference between

response of worker j for task i′ and the random answer
~1
D

.

Also, ~x
(k−1)

i′→j means the weighted sum of responses of other

workers who have solved the task i′. Thus, the inner product
of these two vectors in (2) can assess the similarity between
the response of worker j for the task i′ and sum of those of
other workers who have solved the task i′. A larger positive
similarity value of the two vectors means that worker j is
more reliable. Meanwhile, the negative value specifies that
the worker j does not follow the consensus of other work-
ers and our algorithm regards the worker j as unreliable.

Specially, when ~x
(k−1)

i′→j and ( ~Ai
′j − ~1

D
) are orthogonal for

fixed task i′, the inner product of two vector is close to zero.

This means that ~x
(k−1)

i′→j does not contribute to the message

of the worker j. Then, y
(k)
j→i is defined as the sum of the in-

ner product from each task message except for that of task
i, representing the relative reliability of the worker j. Re-

turning to (1), ~x
(k)
i→j is determined by the weighted voting of

workers who have solved task i, except for the message from

the worker j. The worker j′ contributes to the response ~Aij
′

as much as the weight value y
(k−1)

j′→i . Thus, ~x
(k)
i→j is defined as

the sum of ~Aij
′
y
(k−1)

j′→i which represents the estimated true
answer for the task i. The following describes the pseudo
code of our algorithm.

The maximum number of iterations kmax is analyzed in
section 5.2. In practice, a dozen of iterations is sufficient
for the convergence of our algorithm. After kmax iterations,
our algorithm makes the final estimate vector ~xi of a task i,

Algorithm 1 Multiple Iterative Algorithm

1: Input: E, { ~Aij}(i,j)∈E , kmax
2: Output: Estimation ∀i ∈ [m] , t̂i ∈ {~eui |ui ∈ [1 : D]}
3: For ∀(i, j) ∈ E do

4: Initialize y
(0)
j→i with random Zij ∼ N(1, 1);

5: For k = 1, 2 . . . , kmax do

6: For ∀(i, j) ∈ E do ~x
(k)
i→j ←

∑
j′∈∂i\j

~Aij
′
y
(k−1)

j′→i ;

7: For ∀(i, j) ∈ E do y
(k)
j→i ←

∑
i′∈∂j\i(

~Ai
′j− ~1

D
) ·~x(k−1)

i′→j ;

8: For ∀j ∈ [n] do yj ←
∑
i∈∂j(

~Aij − ~1
D

) · ~x(kmax−1)
i→j ;

9: For ∀i ∈ [m] do ~xi ←
∑
j∈∂i

~Aijy
(kmax−1)
j→i ;

10: Estimate vector t̂i = ~eui where ui = arg max
d

(~xi)

and each component of the vector represents the possibility
of being the true answer. Our algorithm infers the true
answer by choosing ui that has the maximum component
among final likelihoods of ~xi. Then, our algorithm outputs
the estimate of the true answer denoted as a unit vector,
~eui .

3.3 Task Allocation for General Setting
In the previous section, we proposed our iterative algo-

rithm for a bipartite graph according to the pairing model.
However, the number of workers allocated to each task can
differ in cases that are more general. That must bring about
the variation of the number of tasks that each worker solves.
Hence, we consider a general bipartite graph with various
node degrees. To apply our algorithm in this scenario, the
update rules of both messages should be slightly changed in
terms of the task node degree li and the worker node degree

rj . For a task message ~x
(k)
i→j , we divide each message value

by the task node degree (li − 1) so that tasks with differ-
ent degrees receive the similar effect from worker nodes. In
other words, dividing by (li − 1) equalizes the task message

values. Likewise, a worker message y
(k)
j→i is divided by the

worker node degree (rj − 1) for general setting.
In addition to the generalization of the degree profile, we

consider the various number of choices for each task (For
example ∀i ∈ [m], Di ∈ {2, 3, 4}). In practice, the number
of choice for each task can differ from one another and our
Algorithm 2 can cope with this variation. The following de-
scribes the pseudo code of our generalized algorithm.

Algorithm 2 Generalized Multiple Iterative Algorithm

1: Input: E, { ~Aij}(i,j)∈E , kmax
2: Output: Estimation ∀i ∈ [m] , t̂i ∈ {~eui |ui ∈ [1 : Di]}
3: For ∀(i, j) ∈ E do

4: Initialize y
(0)
j→i with random Zij ∼ N(1, 1);

5: For k = 1, 2 . . . , kmax do

6: For ∀(i, j) ∈ E do ~x
(k)
i→j ←

∑
j′∈∂i\j

(
1

li−1

)
~Aij
′
y
(k−1)

j′→i ;

7: For ∀(i, j) ∈ E do

8: y
(k)
j→i ←

∑
i′∈∂j\i

(
1

rj−1

)
( ~Ai
′j − ~1

Di′
) · ~x(k−1)

i′→j ;

9: For ∀j ∈ [n] do

10: yj ←
∑
i∈∂j

(
1

rj−1

)
( ~Aij − ~1

Di
) · ~x(kmax−1)

i→j ;

11: For ∀i ∈ [m] do ~xi ←
∑
j∈∂i

(
1

li−1

)
~Aijy

(kmax−1)
j→i ;

12: Estimate vector t̂i = ~eui where ui = arg max
d

(~xi)
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(a) An independent multiple-
choice question: Determining
the breed of a dog.

(b) GalaxyZoo project: classifying
galaxies according to their shapes.

(c) A real task in Amazon
Mechanical Turk: Filling
up address information of
a given company.

(d) reCAPTCHA:
Typing words for
spam protection and
a book digitization
project.

Figure 2: Examples of multiple-choice questions.

Adaptive task allocation method. One of significant
points of our algorithm is that worker’s relative reliability
can be assessed in the course of its iterations. If we use
this property, the performance of inferring the true answer
can be improved further. Consider the adaptive strategy as
an improvement method using the above property. First, a
small portion of the tasks is used to infer the reliability of
each worker using the iterative algorithm. Then, we select
partial workers who have higher worker values to message
and let them solve all of the remaining tasks. Although this
method gives a larger burden to workers who are more reli-
able, the total number of edges is maintained. In section 6,
the adaptive task allocation method will be explained in
detail and we will verify some of the gains of this method
through several experiments.

4. APPLICATIONS
We described an algorithmic solution to crowdsourcing

systems for multiple-choice questions in the previous sec-
tion, and we now look into some applications that our al-
gorithm can treat. As we can see in crowdsourcing sys-
tems like Amazon Mechanical Turk, tasks are distributed in
the form of multiple-choice questions and short-answer ques-
tions like entering zip-code. Although previous algorithms
like [9, 21] have shown remarkable results in binary cases, a
merit of our algorithm is that outstanding results can even
be achieved on multiple-choice and short-answer questions
that real tasks usually contain. Furthermore, a remarkable
characteristic of our model is that the number of choices
can vary for each question. This flexibility makes our model
more applicable for real crowdsourced data. In this section,
we describe some applications in detail that can apply our
algorithm.

Labeling or tagging images is a common usage of exploit-
ing crowdsourcing systems, and shows successful results in
practice [3]. One of such example is classifying species or
breeds of dogs in the images illustrated in Figure 2(a). Such
tasks are very tough for machines, and even humans who
have no background knowledge of dogs. These tasks are suit-
able for crowdsourcing materials and have multiple choices
that are directly applicable to our algorithm.

Another application of labeling tasks is Galaxy Zoo, one of
the well known projects using the wisdom of crowds (cf. Fig-
ure 2(b)). Galaxy Zoo has distributed over 300,000 images of
galaxies to crowds for classification by their shape. Any vol-
unteer with no prior knowledge can visit the website, where

they are presented with an image of a galaxy and instruc-
tions of labeling manner. Then they answer a series of ques-
tions about the visual form of the galaxy, like whether it has
arms or a bulge. Each step consists of multiple-choice ques-
tions, and the number of choices varies for each question.
Since our algorithm is flexible for the number of choices, the
responses of Galaxy Zoo can be easily aggregated using our
algorithm.

For short-answer questions, it is hard to aggregate work-
ers’ responses in general, because their responses can vary.
Our algorithm can settle this problem with the idea of trans-
forming short-answer questions into several multiple-choice
questions. When the length of the response to a short-
answer question is fixed, short-answer questions can be split
into several smaller tasks by considering each character of
a response. In other words, each character is treated as
one microtask in short-answer questions. For example, con-
sider the task of entering a fixed-length answer such as a zip
code like 97232. It can be treated as five microtasks, and
each of the characters has 10 possible answers, from 0 to 9.
Note that in each microtask, we only consider the number
of choices as much as the number of candidate answers. For
example, if candidate answers for a microtask are “4”, “7”,
and “9”, then we set the number of choices to three for this
microtask. In addition, we can decide a set of candidate an-
swers as all gathered responses simply, or only responses of
top-K likelihood effectively.

Next, we consider when the length of the response varies.
We can make another small task that determines the true
length of the response and then we can discard the answers
whose length is determined as a minor option. In summary,
every short-answer question can be decomposed to several
microtasks by considering each character of the answer and
its length. Characters of the response and its length are
transformed into small microtasks, and each microtask is
considered a multiple-choice question. Thus, by applying
our algorithm, responses to these short-answer questions can
be easily aggregated. For a real task in Amazon Mechanical
Turk, as illustrated in Figure 2(c), entering zip codes or
phone numbers is an example of short-answer questions.

Another popular crowdsourcing application for short-answer
questions is reCAPTCHA [19] illustrated in Figure 2(d). In
its original version, CAPTCHA was first introduced to dis-
tinguish automatic bots by typing some characters correctly
in a given image. It was extended to reCAPTCHA which
digitalizes some hard phrases that Optical Character Recog-
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nition (OCR) techniques cannot recognize. In this case, the
length of responses can vary, so a small task determining the
length of response is necessary, as we mentioned. Although
discarding the rest of the responses can be viewed as a waste,
it is a tolerable loss, since the length of the responses is gen-
erally consistent. In addition, we need discuss the number of
tasks r, each worker is given. In reCAPTCHA, we can only
assign one entering task to each worker, while our algorithm
needs sufficient number of tasks for each worker to ensure
reliable inference. However, since we split each worker’s re-
sponse into several microtasks, the task size problem is nat-
urally solved.

Another special application of our algorithm is as an adap-
tive task allocation strategy, since it explicitly computes
the relative reliability of the workers, even with no prior
knowledge of the worker distribution. If we design a proper
adaptive strategy for crowdsourcing systems, we can boost
its performance from the perspective of quality control of
workers. The best workers can be recruited and exploited
to resolve more questions. It can be viewed as a method for
finding experts from crowds or filtering out workers who just
spam for rewards; therefore, we can exploit reliable workers
efficiently under the same budget through an adaptive task
allocation strategy. We will examine such an adaptive strat-
egy in the experiment section.

5. ANALYSIS OF ALGORITHMS
In this section, we provide proof for the performance guar-

antee of Algorithm 1. In Theorem 1, we show that the error
bound depends on task degree l and the quality of the work-
ers. More precisely, we show that an upper bound on the
probability of error decays exponentially. From this section,
we assume that Di = D for all i ∈ [n].

5.1 Quality of workers
Let ~vj denote the confusion vector of each worker j. Each

component of the vector means the probability that a worker
chooses the corresponding choice for a response. For a fixed
task i with true answer t̂ui ∈ U , the confusion vector ~vj of
worker j is defined as follows:

vjd =

{
pj if t̂ui = ~ed
1−pj
D−1

otherwise

From an information theoretical perspective, the quality
of workers can be defined as negative entropy with an off-
set and using the above confusion vector, we can define the
quality of workers as

q = E
[
H(p)− p̄ log(D̂) + log(D)

]
, (3)

where H(p) = p log p+ p̄ log p̄, p̄ = 1− p, D̂ = D − 1.

According to the quality of each worker, we can divide
the workers into three types. At the extreme, workers with
a quality close to zero make arbitrary responses. Since, we
cannot obtain any information from them, let us define them
as “Non-informative workers.” At the other extreme, work-
ers with the a quality close to one make almost true an-
swers and we call them “Reliable workers.” Lastly, there
are workers who make wrong answers on purpose and af-
fect the crowdsourcing system badly; they can be regarded
as “Malicious workers.” In our algorithm, since the worker

Malicious
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Figure 3: Comparison of the quality between neg-
ative entropy with offset and second-order polyno-
mial approximation.

message value yj is related to the quality, workers with neg-
ative yj , positive yj and yj close to zero correspond to “Re-
liable workers,” “Malicious workers,” and “Non-informative
workers,” respectively.

Although the quality of workers theoretically follows neg-
ative entropy, we found that a second-order polynomial ap-
proximation is sufficient for our analysis as described in
Figure 3. As the dimension of the tasks increase, the ap-
proximation deviates from the real quality. Nevertheless,
second-order approximation fits well to the real quality in
the acceptable dimension case that our algorithm targets.

q ' q̃1 = E
[( D

D − 1

)2(
pj −

1

D

)2]
(4)

For simplicity, we will use this approximated quality in
the following sections. There is one more necessary assump-
tion about worker distribution that workers give the correct
answers on average rather than random or adversarial an-

swers, so that E [pj ] >
1

D
. Given only workers’ responses,

any inference algorithms analogize the true answers from the
general or popular choices of crowds. Consider an extreme
case in which everyone gives adversarial answers in a binary
classification task; no algorithm can correctly infer the reli-

ability of the crowd. Hence, the assumption E [pj ] >
1

D
is

a natural necessary.

5.2 Bound on the Average Error Probability
From now on, let l̂ ≡ l − 1, r̂ ≡ r − 1, and the average

quality of workers is defined as q = E[( D
D−1

)2(pj − 1
D

)2].

Also, σ2
k denotes the effective variance in the sub-Gaussian

tail of the task message distribution after k iterations.

σ2
k ≡

2q

µ2T k−1
+

(
D

D − 1

)2(
3 +

1

8qr̂

)[
1− 1/T k−1

1− 1/T

]
, (5)

where T =
(D − 1)2

(D2 −D − 1)
q2 l̂r̂.
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Theorem 1. For fixed l > 1 and r > 1, assume that m
tasks are assigned to n workers according to a random (l, r)-
regular bipartite graph according to the pairing model. If the
distribution of the reliability satisfies µ ≡ E[ D

D−1
(pj− 1

D
)] >

0 and T > 1, then for any t ∈ {ei}m, the estimate after k
iterations of the iterative algorithm achieves

1

m

m∑
i=1

P(ti 6= t̂
(k)
i ) 6 (D − 1)e−lq/(2σ

2
k) +

3lr

m
(l̂r̂)2k−2. (6)

The second term of the equation is the upper bound of
probability that the graph dose not have a local tree-like
structure and it can be quite small as long as we treat a
large number of tasks. Therefore, the dominant factor of
the upper bound is the first exponential term. As shown in
(5), T = 1 is the crucial condition and we can satisfy T > 1
by using a sufficiently larger l or r. Then, with T > 1, σ2

k

converges to a finite limit σ2
∞, and we have

σ2
∞ =

(
3 +

1

8qr̂

)(
T

T − 1

)
. (7)

Thus, the bounds of the first term of (6) does not depend
on the number of tasks m or the number of iterations k.
The following corollary describes an upper bound that only
depends on l, q, σ2

∞, and D.

Corollary 1. Under the hypotheses of Theorem 1, there

exists m0 = 3lrelq/4σ
2
∞(l̂r̂)2(k−1) and k0 = 1+(log (q/µ2)/ log T )

such that

1

m

m∑
i=1

P(ti 6= t̂
(k)
i ) 6 De−lq/(4σ

2
∞), (8)

for all k > k0 and for all m > m0.

Proof. First, we will show that σ2
k 6 2σ2

∞ for k >
1 + (log (q/µ2)/ log T ). Since T > 1, as per our assump-

tion, σ2
k = (2q/µ2T k−1) + ( D

D−1
)2(3 + 1/8qr̂) 1−1/Tk−1

T−1
6

2 + σ2
∞ 6 σ2

∞ + σ2
∞ 6 2σ2

∞. Therefore, the first term of

(6) is bounded like (D − 1)e−lq/2σ
2
k 6 (D − 1)e−lq/4σ

2
∞ .

Next, it is sufficient to set m > 3lrelq/4σ
2
∞(l̂r̂)2(k−1) to en-

sure 3lr
m

(l̂r̂)2k−2 6 e−lq/(4σ
2
∞).

From corollary 1, we obtained that the required number
of iterations k0, is small in that it is the only logarithmic
in l,r,q,µ and D. On the other hand, although the required
number of entire tasks m0, is very large in corollary 1, the
experimental result in section 6 shows that the performance
of error exhibits exponential decay as stated in (8).

Now, if we assume that there are no limitation on worker
degree r and T > 2, we can find σ2

∞ 6 2(3 + 1/8qr̂). Then,
for all r > 1 + 1/8q, as similar with the [11], we get the
following bound:

1

m

m∑
i=1

P(ti 6= t̂
(k)
i ) 6 De−lq/32. (9)

Also, we can check the following corollary in terms of the
number of queries per task l to achieve a target accuracy.
Hence, we get the following corollary.

Corollary 2. Using the task assignment scheme accord-
ing to pairing model with r > 1 + 1/8q and the iterative al-
gorithm, it is sufficient to query (32/q)log(D/ε) times per
task to guarantee that the error bound is at most ε for any
ε 6 1/2 and for all m > m0.

5.3 Proof of the Theorem 1
The proof is roughly composed of three parts. First, the

second term at the right-hand side of (6) is proved using
its local tree-like property. Second, the remaining term of
the right-hand side of (6) is verified using Chernoff bound
in the assumption that the estimates of the task message
follow sub-Gaussian distribution. Lastly, we prove that the
assumption of the second part is true within certain param-
eters. To apply density evolution with multi-dimensional
vector form is difficult in that the cross term of each com-
ponents are generated. Therefore our proof can be differen-
tiated from binary setting in [11].

Without a loss of generality, it is possible to assume that
the true answer of each task, for any i ∈ [m], ti = ~e1. Let

t̂
(k)
i denote the estimated answer of task i defined in section

5.2. If we draw a task III, uniformly at random from the task
set, the average probability of error can be denoted as

1

m

∑
i∈[m]

P(ti 6= t̂
(k)
i ) = P(tIII 6= t̂

(k)
III ), (10)

Let GIII,k denote a subgraph of G that consists of all the
nodes whose distance from the node ‘III’ is at most k. After
k iterations, the local graph with root ‘III’ is GIII,2k−1, since
the update process operates twice for each iteration. To
take advantage of density evolution, the full independence
of each branch is needed. Thus, we bound the probability
of error with two terms, one that represents the probability
that subgraph GIII,2k−1 is not a tree and the other, which
represents the probability that GIII,2k−1 is a tree with a wrong
answer.

P(tIII 6= t̂
(k)
III ) 6 P(GIII,2k−1 is not a tree )

+ P(GIII,2k−1 is a tree and tIII 6= t̂
(k)
III ). (11)

The following lemma bounds the first term and proves
that the probability that a local subgraph is not a tree van-
ishes as m grows. A proof of Lemma 1 is provided [11] (cf.
Karger, Oh and Shah 2011, section 3.2).

Lemma 1. From a random (l,r)-regular bipartite graph
generated according to the pairing model,

P(GIII,2k−1 is not a tree ) 6
(
l̂r̂
)(2k−2) 3lr

m
.

From the result of Lemma 1, we can concentrate directly
on the second term of (11) and define the pairwise difference

of task messages as x̃xx
(k)
d = xxx

(k)
1 − xxx

(k)
d for ∀d ∈ [2 : D].

P(tIII 6= t̂
(k)
III |GIII,k is a tree) 6 P(∪Dd=2{x̃

(k)
III 6 0}|GIII,k is a tree)

6 P(∪Dd=2{x̃III 6 0}).

To obtain a tight upper bound on P(∪Dd=2{x̂xx
(k)
d 6 0})

of our iterative algorithm, we assume that x̃xx
(k)
d follow sub-

Gaussian distribution for any d ∈ [2 : D] and prove these in
section 5.4. Then, Chernoff bound is applied to the indepen-
dent message branches and this brings us the tight bound
of our algorithm. A random variable zzz with mean m is said
to be sub-Gaussian with parameter σ̃ if for any λ ∈ R the
following inequality holds:

E[eλz
zz] 6 emλ+(1/2)σ̃2λ2

. (12)
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We will first show that for ∀d ∈ [2 : D], x̃xx
(k)
d is sub-

Gaussian with meanmk and parameter σ̃2
k for specific region

of λ, precisely for |λ| 6 1/(2mk−1r̂). Now we define

mk ≡ µl̂Uk−1, ∀k ∈ N

σ̃2
k ≡ 2l̂Sk−1 + [µ2 l̂2r̂(3q2 l̂r̂ + l̂/8)]U2k−4

[
1− (1/T )k−1

1− (1/T )

]
,

where U =
D − 1

D
ql̂r̂, S =

D2 −D − 1

D2
l̂r̂

T =
U2

S
=

(D − 1)2

D2 −D − 1
q2 l̂r̂

then

E[eλx̃
xx
(k)
d ] 6 emkλ+(1/2)σ̃2

kλ
2

. (13)

The locally tree-like property of a sparse random graph
provides the distributional independence among incoming

messages, that is E[eλx̂xx
(k)
d ] = E[eλx̃xx

(k)
d ](l/l̂). Thus, x̂xx

(k)
d sat-

isfies E[eλx̂xx
(k)
d ] 6 e(l/l̂)mkλ+((l/2l̂))σ̃2

kλ
2

for all d ∈ [2 : D].
Because of full independence of each branch, we can apply

Chernoff bound with λ = −mk/(σ̃2
k), and then we obtain

P(x̂xx
(k)
d 6 0) 6 E[eλx̂

xx
(k)
d ] 6 e−lm

2
k/(2l̂σ̃

2
k). (14)

P(∪Dd=2{x̂xx
(k)
d 6 0}) 6

D∑
d=2

P(x̂xx
(k)
d 6 0)

6 (D − 1)e−lm
2
k/(2l̂σ̃

2
k). (15)

Since mkmk−1/(σ̃
2
k) 6 1/(3r̂), we can easily check |λ| 6

1/(2mk−1r̂). This finalizes the Proof of the Theorem 1.

5.4 Proof of Sub-Gaussianity
Now we prove that for all d ∈ [2 : D], x̃xx

(k)
d is sub-Gaussian

with some mk and σ̃2
k. Recurrence relation of the evolution

of the MGFs(moment generating functions) on x̃xxd and ypypyp

are stated as

E[eλx̃
xx
(k)
d ] =

(
Eppp

[
pppE
[
eλy

yy
(k−1)
p |ppp

]
+

p̄̄p̄p

D − 1
E
[
e−λy

yy
(k−1)
p |ppp

]
+

p̄̄p̄p

D − 1
(D − 2)

])l̂
, (16)

E[eλy
yy
(k)
p ] =

(
pE
[
eλ(

1
D

∑D
d=2 x̃xx

(k)
d

)

]
+

p̄

D − 1

D∑
j=2

E
[
eλ(−x̃

xx
(k)
j + 1

D

∑D
d=2 x̃xx

(k)
d

)

])r̂
, (17)

where p̄ = 1− p and p̄̄p̄p = 1− ppp.

Using above MGFs and mathematical induction, we can prove

that x̃xx
(k)
d are sub-Gaussian, for all d ∈ [2 : D].

First, for k = 1, we prove that all of x̃xx
(1)
d are sub-Gaussian

random variables with mean m1 = µl̃ and variance σ̃2
1 = 2l̃,

where µ ≡ E[ D
D−1

(pj − 1
D

)]. Using Gaussian initialization

of yyyp ∼ N (1, 1), we obtain E[eλyyy
(0)
p ] = eλ+(1/2)λ2

regardless

of p. Substituting this into equation (13), we have

E[eλx̃
xx
(1)
d ] =

(
Eppp

[
pppeλ+(1/2)λ2

+
( 1− ppp

D − 1

)
e−λ+(1/2)λ2

+
( 1− ppp

D − 1

)
(D − 2)

])l̂
6

(
E[a]eλ +

(
E[ā]e−λ

)l̂
e(1/2)l̂λ

2

6 e(µλ+λ
2)l̂, (18)

where a =
Dp+D − 2

2(D − 1)
, ā = 1− a =

D(1− p)
2(D − 1)

where the first inequality follows from the fact that 2 6
eλ + e−λ for any λ ∈ R, and the second inequality follows
from that

bez + (1− b)e−z 6 e(2b−1)z+(1/2)z2 , (19)

for any z ∈ R and b ∈ [0, 1] (cf. Alon and Spencer 2008,
Lemma A.1.5) [1].

From kth inductive hypothesis, we have E[eλx̃xx
(k)
d ] 6 emkλ+(1/2)σ̃2

kλ
2

for |λ| 6 1/(2mk−1r̂). Now, we will show E[eλx̃xx
(k+1)
d ] 6

emk+1λ+(1/2)σ̃2
k+1λ

2

for |λ| 6 1/(2mkr̂). In advance, substi-
tuting (19) into (17), we have

Lemma 2. For any |λ| 6 1/(2mkr̂) and p ∈ [0, 1], we get

E[eλy
yy
(k)
p ] 6

[(
pe(1/2)mkλ + p̄e−(1/2)mkλ

)]r̂
·e(

D−2
2D

)r̂mkλ+(D2−D−1

D2 )r̂σ̃2
kλ

2

.

Similar to (18)’s process, from (16), we get

E[eλx̃
xx
(k+1)
d ] 6 Eppp

(
aE
[
eλy

yy
(k)
p

]
+ āE

[
e−λy

yy
(k)
p

])l̂
.

with 2 6 eλ + e−λ for any λ ∈ R.
Substituting the result of Lemma 2 into the above inequality
provides

E[eλx̃
xx
(k+1)
d ] 6 Eppp

[
a
(
pppe(1/2)mkλ + p̄ppe−(1/2)mkλ

)r̂
+ā
(
pppe(1/2)mkλ + p̄ppe−(1/2)mkλ

)r̂]l̂
·e(

D−2
2D

)l̂r̂mkλ+(D2−D−1

D2 )l̂r̂σ̃2
kλ

2

. (20)

Now we are left to bound (20) using following Lemma 3.

Lemma 3. For any |z| 6 1/(2r̂) and p ∈ [0, 1], we get

Eppp

[
a
(
pppe

D−1
D

z + p̄̄p̄pe−
1
D
z
)

+ ā
(
pppe−

D−1
D

z + p̄̄p̄pe
1
D
z
)]r̂

6 e
D−1
D

qr̂z+
(

3
2
qr̂+ 1

8

)
r̂z2 .

Applying this to (20) gives

E[eλx̃
xx
(k+1)
d ] 6 e

D−1
D

ql̂r̂mkλ+
[(

3
2
qr̂+ 1

8

)
m2

k+
(

D2−D−1

D2

)
σ̃2
k

]
l̂r̂
,

for |λ| 6 1/(2mkr̂).
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From the result of mathematical induction, we can ob-
tain the recurrence relations of two parameters of the sub-
Gaussians

mk+1 =
[D − 1

D
ql̂r̂
]
mk,

σ̃2
k+1 =

[(3

2
qr̂ +

1

8

)
m2
k +

(D2 −D − 1

D2

)
σ̃2
k

]
l̂r̂,

with D−1
D

ql̂r̂ > 1, where mk is increasing geometric series.
Thus, the above recursions hold for |λ| 6 1/(2mkr̂) and we
get

mk = µl̂
[D − 1

D
ql̂r̂
]k−1

,

for all k ∈ N. Substituting mk into σ̃2
k, we obtain

σ̃2
k = aσ̃2

k−1 + bck−2, (21)

where

a =
D2 −D − 1

D2
l̂r̂, b = µ2 l̂3r̂

(3

2
qr̂+

1

8

)
c =

[D − 1

D
ql̂r̂
]2

For T 6= 1, This type of recurrence relation can be repre-
sented as the following closed formula.

σ̃2
k = σ̃2

1a
k−1 + bck−2

[1− (a/c)k−1

1− (a/c)

]
. (22)

This finishes the proof of (13).

Proof of Lemma 2. In the k+1th inductive step of mathe-

matical induction, we assume that E[eλx̃xx
(k)
d ] 6 emkλ+(1/2)σ̃2

kλ
2

for any d ∈ [2 : D] with |λ| 6 1/(2mk−1r̂). In other words,

all of x̃xx
(k)
d follow sub-Gaussian distribution with parame-

ters mk and σ̃2
k. From (17), each component at the right-

hand side can be represented as the product of several com-

binations of [eλx̃xx
(k)
d ] and the product of variables means a

linear combination in the exponential field. Using hölder’s
inequality, we prove that the linear transformation of sub-
Gaussian random variables follows also sub-Gaussian distri-
bution with some parameters. Moreover, these parameters
are determined by D, mean mk and variance σ̃2

k of each sub-

Gaussian x̃xx
(k)
d . Applying h”older’s inequality to (17), the

first term at the right-hand side of (17) gives

E
[
eλ(

1
D

∑D
d=2 x̃xx

(k)
d

)

]
6

D∏
d=2

[
E
(
eλ(1/D)x̃xx

(k)
d

)
)D−1

] 1
D−1

6 e
(D−1

D
)mkλ+(D−1

2D2 )σ̃2
kλ

2

.

For the second term at the right-hand side of (17), we have

E
[
eλ(−x̃

xx
(k)
j + 1

D

∑D
d=2 x̃xx

(k)
d

)

]
6 E

[
e−λ(

D−1
D

)x̃xx
(k)
j

]

·
D∏

d=2,d6=j

[
E
(
eλ(1/D)x̃xx

(k)
d

)
)D−1

] 1
D−1

6 e
(− 1

D
)mkλ+(D2−D−1

2D2 )σ̃2
kλ

2

.

Getting these two results together finishes the proof of Lemma 2.

Proof of Lemma 3. From (19), we get(
pppe

D−1
D

z + p̄̄p̄pe−
1
D
z
)
6 e(p

pp− 1
D

)z+ 1
8
z2 .

Applying this result to the original formula, we have

Eppp

[
a
(
pppe

D−1
D

z + p̄̄p̄pe−
1
D
z
)

+ ā
(
pppe−

D−1
D

z + p̄̄p̄pe
1
D
z
)]r̂

6 E
[
e

D
D−1

(ppp− 1
D

)r̂z+ 1
2
(ppp− 1

D
)2r̂2z2

]
· e

1
8
r̂z2 .

In this point, we bring the fact that ea 6 1 + a+ 0.63a2 for
|a| 6 5/8

E
[
e

D
D−1

(ppp− 1
D

)r̂z+ 1
2
(ppp− 1

D
)2r̂2z2

]
6 E

[
1 +

(D − 1

D

)
qr̂z +

1

2

(D − 1

D

)2
qr̂2z2

+0.63
{(D − 1

D

)
qr̂z +

1

2

(D − 1

D

)2
qr̂2z2

}2
]

6 1 +
(D − 1

D

)
qr̂z +

3

2

(D − 1

D

)2
qr̂2z2

6 e

(
D−1
D

)
qr̂z+ 3

2
qr̂2z2 ,

for |z| 6 1/(2r̂) and D 6 2.

Phase Transition. As shown in (22), the performance of
our algorithm is only bounded when the condition T > 1
is satisfied. Meanwhile, with T < 1, σ̃2

k which means the

variance of the x̃xx
(k)
d diverges as the number of iteration k in-

creases. In this case, our performance guarantee is no longer
valid and the performance becomes worse compared to other
algorithms such as EM and majority voting. Note that ex-
cept for extreme case such as when using very low quality
workers and the deficient assignments, T > 1 is easily sat-
isfied and our performance guarantee is valid. In section 6,
we will verify the existence of this critical point at T = 1
through several experiments with different conditions.

a

c
=

(D − 1)2

(D2 −D − 1)
q2 l̂r̂ = T.

6. EXPERIMENTS
In this section, we verify the performance of the multiple

iterative algorithm discussed in the previous sections with
different sets of simulations. First, we check that the er-
ror of the iterative algorithm exhibits exponential decay as l
increases or q increases. In addition, we show that our algo-
rithm achieves a better performance than that of the major-
ity voting and EM approach above a phase transition of T =
1. Next simulation investigates the linear relationship be-
tween yj value and the ratio of the number of correct answers
to rj for each worker. Then, we do experiments on the adap-
tive scenario by varying the proportion of pilot tasks and
selected reliable workers. Finally, we do simulations on the
experiments introduced above with a task set consisting of
various D values.

Comparison with other algorithms. To show the com-
petitiveness of our algorithm, we ran our multiple iterative
algorithm, majority voting, and the EM approach for 2000
tasks and 2000 workers with fixed D = 2, 3, 4, and 5 (Fig-
ure 4 and Figure 5). The performance of the oracle estimator
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Figure 4: Comparisons of probabilities of error be-
tween different algorithms varying l values (m = n =
2000, l = r).

is also presented as a lower bound and the EM algorithm is
implemented with Dawid and Skene’s method [2]. In Fig-
ure 4, we can check that the probability of error decays ex-
ponentially as l increases, and is lower than that of the ma-
jority voting and EM approach above the phase transition
T = 1. In addition, in Figure 5, we find the probabilities of
error decays as q increases.

We expect a phase transition at T = (D−1)2

(D2−D−1)
q2 l̂r̂ = 1

or l = 1 +
√

(D2−D−1)

(D−1)2
1
q

when l = r according to our theo-

rem. With this, we can expect transitions to happen around
l = 4.33 for D = 2(q = 0.3), l = 6.59 for D = 3(q = 0.2),
l = 8.37 for D = 4(q = 0.15), and l = 11.89 for D = 5(q =
0.1). From the experiments in Figure 4, we see that itera-
tive algorithm starts to perform better than majority voting
around l = 5, 6, 10, 18 for each D. Note that these val-
ues are very similar with the theoretical values. It follows
from the fact the error of our method increases with k when
T < 1 as stated in Section 5. As can clearly be seen from the
simulation results, we can check that the l values required
for achieving T > 1 are not large. For example, if we con-
sider dealing with short-answer questions like reCAPTCHA
which is introduced in Section 4, carrying off the required
r(= l) is accomplished easily since each alphabet is consid-
ered as a separate question.

Adaptive Scenario. The inference of workers’ relative re-
liability in the course of iterations is one of the algorithm’s
most important aspects. Now, we define p̂j for each worker
j as following:

p̂j =
the number of correct answers

rj
.

After kmax iterations, we can find reliable workers by the
value of worker message yj since this value is proportional
to p̂j , which is influenced by pj . Relative reliability yj is
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Figure 5: Comparisons of probabilities of error be-
tween different algorithms varying q values (m = n =
2000, l = r = 25).

calculated by the following equation in Algorithm 1.

yj ←
∑
i∈∂j

(
~Aij −

~1

D

)
· ~x(kmax−1)

i→j

Figure 6 shows that there are strong correlations between
yj and p̂j . In one simulation, the correlation coefficients1 be-
tween yj and p̂j are measured as 0.993, 0.989, 0.968, 0.938 for
each D = 2, 3, 4, and 5, which are significantly large values.
We can also check that the line passes approximately the
point of ( 1

D
, 0), which represents a non-informative worker’s

reliability, as expected in Section 5.
One of the utilizations of this correlation property is the

adaptive scenario, which extracts more reliable workers from
the crowds after the inference of pilot tasks, and lets them
solve the remaining tasks. We can improve the performance
of our algorithm further with the scenario. The strategy
consists of two steps in detail. In the first step, we use m′ =
αm pilot tasks to infer the relative reliability of workers
using the iterative algorithm.

m′ = αm,n′ = n

l′ = l, r′ = αr

In the second step, we select βn workers who have higher

|yj | values after the first step, and each worker solves m−m′
βm

r

tasks out of the remaining m−m′ tasks. We sort them out
with higher |yj | values since we can gain less information
from workers who have lower |yj | values, which means that
their reliability is closer to 1/D than those of the others
(Figure 6 and Figure 3).

m′′ = m−m′, n′′ = βn

l′′ = l, r′′ =
m−m′

βm
r

1Pearson product-moment correlation coefficient(PPMCC)
is used for evaluation.
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Figure 6: Relationship between yj and p̂j (m = n =
2000, k = 10).

To show the performance improvements when using the
adaptive scenario, we perform experiments with several (m′, β)
sets. Figure 7 shows that the probability of error is smaller
than for the non-adaptive scenario when proper m′ and β
are used. Specifically, as β decreases, the error tends to de-
crease since fewer, but more reliable, workers then solve the
rest of the questions. However, we have to consider each
worker’s inherent capacity2 when choosing an appropriate
β. With limited capacity, we cannot use an unreasonably
low β, since it places too high a burden on each worker. In
addition, we have to take enough m′ pilot tasks to guarantee
the accuracy of the relative reliability, which are inferred in
the first step.

Simulations on a set of various D values. To show
the performance of the generalized multiple iterative algo-
rithm, we do simulations on a task set consisting of various
D values with Algorithm 2. In detail, we repeat the same
experiments with a question set composed in 1 : 1 : 1 ratios
of tasks which D are 2, 3, 4 respectively. Then, we have to
investigate for the general case that q is calculated with the
following equation.

q = E[qj ] = E
[( Di
Di − 1

)2(
pij −

1

Di

)2]
We define qj as an individual quality of the worker j. To

perform simulations and to analyze the results, we have to
make an assumption that a worker with individual quality
qj solves question with a reliability pij for each Di. We can
check that the same tendencies found in previous simulations
also appear in Figure 8. There is also the strong correlation
between yj and p̂j as 0.960. This result is notable in that in
the real world, there are many more cases where questions
have varying number of choices than fixed ones.

2The number of possible questions that each worker can
manage to solve in one transaction.
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Figure 7: Adaptive Scenario (m = n = 2000, l = 25).

7. CONCLUSION
We have proposed an iterative algorithm that can handle

multiple-choice and short-answer questions which are gen-
eral types of questions in real crowdsourcing systems. Es-
pecially for short-answer questions, we provide a method of
transforming original tasks into several microtasks. There-
fore, we give a general solution for real crowdsourcing sys-
tems to infer the correct answers from unreliable responses.
From the performance analysis of our algorithm, we have
proved that an upper bound on the probability of error
decays exponentially and we have verified that our algo-
rithm outperforms majority voting and EM-based algorithm
through numerical experiments.

For the future works, our work can be combined to the
context of online learning, or we can think of another model
for multiple-choice questions that have multiple correct an-
swers, not just one correct answer.
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