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In contemporary society, understanding how information, such as trends and viruses, spreads in
various social networks is an important topic in many areas. However, it is difficult to mathematically
measure how widespread the information is, especially for a general network structure. There have
been studies on opinion spreading, but many studies are limited to specific spreading models such
as the susceptible-infected-recovered (SIR) model and the independent cascade model, and it is
difficult to apply these studies to various situations. In this paper, we first suggest a general
opinion spreading model (GOSM) that generalizes a large class of popular spreading models. In
this model, each node has one of several states, and the state changes through interaction with
neighboring nodes at discrete time intervals. Next, we show that many GOSMs have a stable property
that is a GOSM version of a uniform equicontinuity. Then, we provide an approximation method
to approximate the expected spread size for stable GOSMs. For the approximation method, we
propose a concentration theorem that guarantees that a generalized mean-field theorem calculates
the expected spreading size within small error bounds for finite time steps for a slightly dense
network structure. Furthermore, we prove that a “single simulation” of running the Monte-Carlo
simulation is sufficient to approximate the expected spreading size. We conduct experiments on
both synthetic and real-world networks and show that our generalized approximation method well
predicts the state density of the various models, especially in graphs with a large number of nodes.
Experimental results show that the generalized mean-field approximation and a single Monte-Carlo
simulation converge as shown in the concentration theorem.

I. INTRODUCTION

How political opinion, product adoption, rumors,
trends and viruses spread through a society has been of
fundamental interest for many years and has been studied
in a wide variety of research disciplines. In particular, ac-
curately analyzing the spread size of information such as
a virus in a human society is one of the growing concerns
in diffusion problems. For example, recent epidemics,
such as severe acute respiratory syndrome (SARS), in-
fluenza A, and Ebola, show that viruses can easily spread
on a global scale. Similarly, rumors and trends can also
spread quickly and widely to alter human behavior. Fur-
thermore, analyzing the spread size and density of in-
formation can be used to maximize the influence of the
information. With the growing usage of online social
networks (OSNs) and blog sites, predicting spread size
to measure the influence of the information is taking on
added significance. Many companies are now performing
viral marketing on OSNs, and they rely on the word-of-
mouth of adopters to influence other people to increase
product sales. Since companies can only perform viral
marketing with a limited advertising budget, predicting
and evaluating the effectiveness of viral marketing strate-
gies (in terms of number of final adopters) is of the utmost
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importance.

For the study of information spread size approximation
problems, there have been a number of works on build-
ing spreading models through mathematical assumptions
about social network structures and how information
spreads in social networks. In these models, a person is
represented by a node, and a relationship between people
is represented by a graph structure of the nodes. Infor-
mation such as whether or not a person is an iPhone user
or is infected by an epidemic are assigned on each node as
a state. For example, in the epidemic model, each person
(i.e., node) can be assigned one of three states: infected,
not infected, or recovered.

The voter model is a prime example of a spreading
model [1, 2]. In this model, each node updates its state
by following the state of a randomly chosen neighbor.
The original voter model has only two possible states:
0 or 1. The general voter model [3, 4] generalizes this
original model. One of the variants of the voter model
is the Naming Game [5], in which each node has a set of
states that evolves conditioned on its own state as well
as its neighbors.

The susceptible-infected-recovered (SIR) model [6] is
a well-known model for predicting the diffusion of epi-
demics. The SIS model is one of the variations of the
SIR model. In this setting, each infected (or activated)
node attempts to infect its neighbors independently and
succeed with a fixed probability or rate. The indepen-
dent cascade model [7] is also one of the models that
aims to explain the opinion spreading process and can
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be regarded as an SIR model. In the independent cas-
cade model, every influenced node has a single chance
to influence each of its uninfluenced neighbors. Recently,
the Hawkes point process model was used to analyze user
activities in social networks [8, 9]. It is known that the
rate of events in an extended model is identical to the
rate of new infections in the SIR model [10].

Another well-known spreading model is the linear
threshold model [11, 12], where each node possesses a real-
valued threshold, to which the sum of incoming influences
from neighboring nodes is compared at each iteration.
If this combined influence is greater than the threshold,
then the node becomes influenced (or activated). Kempe
et al. [7] integrated both the threshold model and the
cascade model. They revealed that the general threshold
model is equivalent to the general cascade model, which is
the generalized version of the independent cascade model.

However, evaluating the expected density of nodes with
each state in the network is often difficult [11, 13, 14],
especially for a general network structure and a gen-
eral spreading model. Many analyses on these spread-
ing models have been performed on networks satisfying
certain properties that are very strong. For the linear
threshold model, most of previous studies have focused
on special graphs, such as complete graphs [11] and lo-
cally tree-like graphs [14–16]. Additionally, there is a vast
literature on the SIR models for analyzing the spread on
networks, including locally tree-like graphs [6, 17] and
graphs with a clustered structure [18]. Schneider-Mizell
and Sander [3] explored a general voter model on bipar-
tite networks and random scale-free networks.

Therefore, there have been some studies to predict the
state density in complex networks. Moretti et al. [4] ana-
lyzed the general voter model by the mean-field approx-
imation on networks that disregard the specific connec-
tion pattern. Sahneh et al. [19] constructed a generalized
epidemic spreading model for multistate and multilayer
networks and provides a mean-field approximation for
the overall density. In recent studies, a pairwise mean-
field approximation [20–22] that improves the accuracy
of the mean-field approximation has been studied. In the
pairwise approximation, the approximation is performed
through the probability of the state combination of two
connected nodes to consider the dynamical correlation
between neighbors [23, 24]. However, these studies focus
only on the specific spreading model, so they have limi-
tations in scalability. Moreover, the theoretical accuracy
of the approximation is not properly shown.

In this paper, we first provide a general opinion spread-
ing model (GOSM) that is a generalization of various
discrete-time spreading models. The GOSM represents
models that update each node’s state with some proba-
bility that is dependent on the present node’s state and
its neighbors’ states. Then, we focus on GOSMs that
have the stable property, which can be seen as a GOSM
version of a uniform equicontinuity. In essence, we de-
fine a GOSM as stable when slight changes in the state
density of a set of nodes do not cause a dramatic change

in the state transition probability in the next step. We
prove that stable GOSM includes well-known spreading
models, such as the voter model and the SIR model.

Next, we provide a concentration theorem showing
that our generalized mean-field approximation converges
to exact solutions with high probability for any stable
GOSM. Specifically, the theorem proves that under the
stable GOSM, for any initial node states, our generalized
mean-field approximation is close to the true expected
state density with probability 1 − o(n−δ) for a certain
δ, where n is the number of nodes. The concentration
theorem also provides a theoretical background for ap-
plicability of the mean-field approximation. Moreover,
surprisingly, we prove that just a single simulation of the
Monte-Carlo simulation can efficiently approximate the
true expected state density with any finite number of
states and network structures that have degree ω(log n).
Previous mean-field approximation studies [4, 20–22] ad-
dressed only a limited set of GOSMs that cannot be ap-
proximated in other GOSMs, but our theorem is appli-
cable to all stable GOSM.

To show that our concentration theorem is also proven
experimentally, we demonstrate the effectiveness of gen-
eralized approximation and the single Monte-Carlo run
via extensive experiments on both synthetic networks
and real-world networks. Experimental results show that
our generalized mean-field approximation is sufficiently
accurate compared to the state-of-the-art approximation
in many stable GOSMs such as the general voter model,
the epidemic spreading model, and the daily active user
(DAU) model [25]. We also experimentally show that
a single simulation of the Monte-Carlo simulation can
approximate the true expected state density sufficiently
well.

Paper Organization. The rest of the paper is struc-
tured as follows. In Section II, we present the GOSM
that can represent many state-change spreading mod-
els on networks. In Section III, we suggest the stable
property for the GOSM and show many classical spread-
ing models have the stable property. In Section IV, we
present the concentration theorem, which shows a new
framework of calculating a spreading model’s state den-
sity, and we formally prove its validity. Our experimental
results on both synthetic and real data are given in Sec-
tion V. Finally, our conclusion is given in Section VI.

II. GENERAL OPINION SPREADING MODELS

In this section, we describe our class of GOSMs as a
general framework for opinion spreading in social net-
works. Such a model is a special case of a discrete-time
Markov process in which the future states of each node
depend upon only the present states of that node and its
neighbors, not on the sequence of present and past states.
After we present the expression of GOSM, we show how
several popular spreading models (e.g., the voter model
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and the SIR and SIS models) can be easily represented
under our GOSM.

In our model, we consider a given directed graph
G = (V,E), where V is a set of nodes (with n = |V |)
and E is a set of directed edges. A directed edge euv
from node u to node v implies that node u can influence
node v, and we say that node u is an in-neighbor of node
v. At each discrete time step t = 0, 1, 2, . . . , each node
v ∈ V exists in a state drawn from a finite state space
S = {0, 1, . . . s− 1}. Let sv(t) ∈ S be a state variable of
node v at time t, and let Iiv(t) ∈ {0, 1} be an indicator
variable such that Iiv(t) = 1 if sv(t) = i and 0 otherwise.
If s = 2, then the state of a node may correspond to
an indicator of adoption, i.e., whether or not the node
has adopted a certain opinion. If node v’s state vari-
able satisfies sv(t) = 0, node v has not yet adopted the
opinion, whereas if sv(t) = 1, it has. The state of node
v at time 0 is assigned based on the initial probability
{aiv(0)}. Specifically, Pr[sv(0) = i] = aiv(0), indepen-
dently of all other nodes. If {aiv(0)} takes its value only
from {0, 1}, then the initial state of node v is fixed. The
state of node v at time t+ 1 is updated probabilistically,
where the probability is determined only by the state of v
and the states of its set of in-neighbors (“neighbors”, for
brevity), which we denote by N(v), at time t. The inde-
gree of v, which we denote by dv, is simply dv = |N(v)|.

Let us define the function fkv as the probability that v
is in state k at time t+ 1 if the states of its neighboring
nodes at time t are given, that is,

Pr[sv(t+ 1) = k|{su(t)}u∈N(v)] = E[Ikv (t+ 1)] =

fkv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)).

Then,
∑
k∈S f

k
v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)) = 1. The

inputs of the function fkv are the state indicators of the
current node v and its neighbors u.

Next, we define f̄kv (xv, {xu}u∈N(v)), which is a natu-

ral extension of fkv (·) that extends the input variables
from indicators {Iiv(t)}i∈S ∈ {0, 1}s to real numbers
xv = {xiv}i∈S ∈ [0, 1]s. The indicator variables can also

be the input of f̄kv . Then,

f̄kv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)) =

fkv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)).

Examples are given in II A, and fkv and f̄kv can be derived
for other models as well.

The goal of this paper is to estimate the expected state
density:

E
[ 1

|W |
∑
u∈W

Iiu(t)
]

for a given t, i ∈ S, and W ⊆ V .

For example, suppose that we are considering the influ-
ence regarding the adoption of a product, where S =
{0, 1}, with 1 meaning that the person adopts the prod-
uct and 0 meaning otherwise. When we take W = V ,

we are interested in the fraction of all people in net-
work G who adopt the product. If we consider W to
be all female users in network G, then we are interested
in the fraction of women who adopt the product. We
assume that each node v has a given initial state proba-
bility aiv(0) (i.e., E[Iiv(0)] = Pr[Iiv(0) = 1] = aiv(0)) such
that

∑
i∈S a

i
v(0) = 1.

Let us now show how several well-known spreading
models can be represented by our model. Specifically,
we will give the details of the mappings and how to an-
alyze these models under our framework.

A. Simple Voter Model

A voter model provides a set of rules for contact-based
spreading in a network. In statistical physics, such a
model has also been used to study the phase transition
phenomenon of a certain type of Ising model [26]. Let
us first describe the simple voter model [1]. A node v
updates its state by copying that of a randomly chosen
neighbor. In each time step, node v adopts the state
of its neighbor u with probability 1/dv, where dv is the
indegree of v. We can use the GOSM to describe the
state-change rule for the simple voter model as follows:

fkv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)) =
1

dv

∑
u∈N(v)

Iku(t) (1)

for all k ∈ S. The extended function f̄kv is given by

f̄kv (xv, {xu}u∈N(v)) =
1

dv

∑
u∈N(v)

xku. (2)

B. General Voter Model

In addition to the simple voter model discussed above,
there is also the general voter model, in which each edge
euv has a weight wuv and

∑
u∈N(v) ωuv = dv. In the

general voter model, node v selects its neighbor u as its
reference neighbor with a probability proportional to wuv
in each time step. Let pi,j,k be the probability that node
v’s state will change from i to k if the state of the ref-
erence node u is j. Using the notation of our model, we
have the following:

fkv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

=
∑
i∈S

Iiv(t)[
∑
j∈S

[pi,j,k
1

dv

∑
u∈N(v)

ωuvI
j
u(t)]]. (3)

C. SIR Model and Independent Cascade Model

In the SIR model, each node is in one of three states:
susceptible, infected, or recovered. Using our model, we
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can label these states as states 0, 1, and 2, respectively.
In each time step, a susceptible node v has an oppor-
tunity to be infected by each of its infected neighbors.
Each infected neighbor u will succeed in infecting v with
probability βuv ∈ [0, 1]. Furthermore, infected nodes will
recover with probability γ; recovered nodes will not be
infected again and lose the ability to infect others. The
state-change rule for this model is as follows:

(i) f0v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)
∏

u∈N(v)

(1− I1u(t)βuv),

(ii)f1v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)(1−
∏

u∈N(v)

(1− I1u(t)βuv)) + I1v (t)(1− γ),

(iii)f2v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)) = I1v (t)γ + I2v (t).

(4)

In the independent cascade model [7], each node is in
one of three states: inactivated, activated, or already ac-
tivated, where a node in the last state has lost the ability
to influence others. These three states of the indepen-
dent cascade model correspond to the three states of the
SIR model, and the dynamics of the independent cas-
cade model are similar to stochastic SIR dynamics. In
the original independent cascade model, γ = 1, meaning
that an activated node always deactivates after it tries to
influence its neighbors.

D. SIS Model and Its Generalized Form

In the susceptible-infected-susceptible (SIS) model,
each node has two possible states: the susceptible state
and the infected state, which we label as states 0 and 1,
respectively. The SIS model is similar to the SIR model.
However, in the SIS model, infected nodes have a chance
to spontaneously revert to the susceptible state. Using
our GOSM, we can specify the state-change rule for the
SIS model as follows:

(i)f0v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)
∏

u∈N(v)

(1− I1u(t)βuv) + I1v (t)γ,

(ii)f1v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)(1−
∏

u∈N(v)

(1− I1u(t)βuv)) + I1v (t)(1− γ).

A generalized SIS model [27] can also be expressed as
a GOSM. Such a model considers a state space S =
{0, 1, . . . , s− 1}; the infection rate between nodes in the
states `− 1 and ` is β`, and each node in a nonzero state
can revert to the zero state with probability γ. As an ex-
tension to the SIS model, this model can also be mapped
to the GOSM. For instance, the state-change rule for a

ternary SIS model is expressed by the following set of
equations:

(i) f0v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)
∏

u∈N(v)

(1− I1u(t)β1) + (1− I0v (t))γ,

(ii)f1v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)(1−
∏

u∈N(v)

(1− I1u(t)β1))

+I1v (t)(
∏

u∈N(v)

(1− I2u(t)β2))(1− γ),

(iii)f2v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

=
(
I1v (t)(1−

∏
u∈N(v)

(1− I2u(t)β2)) + I2v (t)
)

(1− γ).

E. DAU Model

The daily active user (DAU) model [25] was proposed
to capture the growth and decline of users in OSNs. In
this model, each user can be in one of the following three
states: nonmember (U), inactive (I), or active (A). We
label them as states 0, 1, and 2, respectively. There are
four state-change rules in the DAU model:

1. Reaction: If an inactive (I) user comes in contact
with an active (A) user, the inactive (I) user will
become active (A) with probability α.

2. Decay: An active (A) user can spontaneously be-
come inactive (I) with probability β.

3. Word-of-mouth reaction: If a nonmember (U) user
comes in contact with an active (A) user, the non-
member (U) user will become active (A) with prob-
ability γ.

4. Media and marketing diffusion: A nonmember (U)
user can spontaneously become active (A) with
probability λ.

The DAU model is a deterministic model and is based
on the assumption that the underlying network is com-
plete. However, one can easily extend the DAU model
to a stochastic model on a noncomplete graph as follows.
Suppose that in a given time step, node v comes in con-
tact with its neighbor u. The state-change probabilities
in the stochastic DAU model are as follows, as expressed
for nodes v and u ∈ N(v):

• Node v is a nonmember user: If node u is active,
then node v will be activated with probability λ+
γ(1−λ). Otherwise, node v will become active with
probability λ.

• Node v is inactive: If node u is active, then node
v will be activated with probability α. Otherwise,
the state of node v will not change.
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• Node v is active: Node v will become inactive with
probability β.

The state-change rule for the stochastic DAU model is
expressed in our model by the following set of equations:

(i) f0v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)(1− λ− 1

dv

∑
u∈N(v)

I2u(t)(1− λ)γ),

(ii)f1v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I1v (t)(1− 1

dv

∑
u∈N(v)

I2u(t)α) + I2v (t)β,

(iii)f2v ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

= I0v (t)λ+ I0v (t)(
1

dv

∑
u∈N(v)

I2u(t)(1− λ)γ)

+I1v (t)(
1

dv

∑
u∈N(v)

I2u(t)α) + I2v (t)(1− β).

Therefore, the GOSM provides a way to express and an-
alyze the behavior of the DAU model. The validity of
this modeling is verified by the experiments reported in
Section V.

III. STABLE PROPERTY

In this section, we define the concept of stable property,
which is a variation of the uniform equicontinuity for the
GOSM. This property is satisfied in well-known GOSMs
such as the general voter model and the SIR model, as
we prove in subsection VI.

In general, the family F of functions is called uniformly
equicontinuous if for all ε > 0, there exists δ > 0 such that
d(f(x1), f(x2)) < ε , for all f ∈ F and all x1, x2 ∈ X such
that d(x1, x2) < δ. However, the stable property targets
a weighted average of probability function {f(xu)}xu∈X
in the GOSM instead of the general function f(x1). The
definition of the stable property is as follows.

Definition 1 (Stable Property) We say a model that has

functions {f̄kv (xv, {xu}u∈N(v))}v∈V,k∈S is stable if for
any ε > 0, there exists a δ > 0 depending only on ε
and the set of spreading model functions f̄kv (·)v∈V , so
that the following condition holds: for any vector sets
{xv}v∈V and {yv}v∈V where xv = {xiv}i∈S ∈ [0, 1]s and
yv = {yiv}i∈S ∈ [0, 1]s, if

∣∣∣ 1

dv

∑
u∈N(v)

ω̄uvx
k
u −

1

dv

∑
u∈N(v)

ω̄uvy
k
u

∣∣∣ ≤ δ (5)

holds for all k ∈ S, all v ∈ V , and all {ω̄uv}u∈N(v) ∈ Kv.

Then, we have∣∣∣ 1

dv

∑
u∈N(v)

ω̄uv f̄kv (xv, {xu}u∈N(v))

− 1

dv

∑
u∈N(v)

ω̄uv f̄kv (yv, {yu}u∈N(v))
∣∣∣ ≤ ε (6)

holds for all v ∈ V , all k ∈ S and all {ω̄uv}u∈N(v) ∈
Kv where Kv = {(ω̄uv)u∈N(v)|

∑
u∈N(v) ω̄

2
uv ≤ 4dv, ω̄uv ∈

R++}.
This stable property represents that a sufficiently small
difference between weighted averages of inputs xv and yv
induces a small difference in weighted average outputs.

Many popular GOSMs whose state change probabil-
ity function according to the state ratio of neighboring
nodes is equicontinuous have the stable property. For ex-
ample, the general voter model satisfies the stable prop-
erty because if we determine δ as (

∑
i,j∈S 3pi,j,k)δ = ε,

then the stable property holds under the condition of∑
u∈N(v) ωuv

2 ≤ 4dv. Additionally, the SIR model also

has the stable property where dv max(βuv, u ∈ N(v)) ≤
2, βuv < 0.98. Detailed proofs are described in the follow-
ing subsection. One of the spreading models, the major-
ity rule model [28] which has an extremely skewed state
change rule, does not have a stable property. In the
majority rule, assuming there are only two states, the
majority rule’s state change probability function is not
continuous when the state ratio of neighboring nodes is
0.5. For another example, let us assume that there is a
state change rule that randomly selects one of the states
of neighboring nodes in general, but when 80% of neigh-
boring nodes becomes one state, follows the state. This
rule also does not satisfy the stable property.

Proofs of stability for popular GOSMs such as the gen-
eral voter model and the SIR model are included in ap-
pendix A.

IV. CONCENTRATION THEOREM FOR
GENERAL OPINION SPREADING MODELS

In this section, we introduce a formula for approximat-
ing the expected state density of nodes under a stable
GOSM. Moreover, we provide a concentration theorem
that guarantees the error bound of approximations.

According to the stability property of a GOSM, if
the current state density and its approximation are suf-
ficiently similar, we can compute a sufficiently similar
approximate value of the state density from the approxi-
mation of the current state density in the next time step.
On this basis, we present a state density approximation
akv(t) as follows.

Definition 2 (Our approximation of the state density)
We define akv(t+1) ∈ [0, 1], our approximation of E[Iiu(t+
1)] (i.e., Pr[Ikv (t+ 1) = 1]), as follows:

akv(t+ 1) = f̄kv ({aiv(t)}i∈S , {aiu(t)}i∈S,u∈N(v)), (7)
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where {akv(0)} are the initial state probabilities.

The following theorem shows that this approximation
for the next time step can be extended over multiple time
steps. In other words, if a model has the stability prop-
erty, then with high probability, our approximation of the
state density is very close to the expected state density
for a finite number of time steps for an arbitrary network
structure of node degree ω(log n).

Theorem 1 (The concentration theorem) Let G =
(V,E) be a given directed graph, and let S be the set
of state vectors, with n = |V | and s = |S|. Consider
a subset of nodes W ⊆ V , with m = |W |. Suppose
that m = ω(log n) and dv = ω(log n) for all v ∈ V .

If {f̄kv (·)}v∈V,k∈S has the stability property, then for any
initial state probabilities {aiv(0)}, any constant T ∈ N,
any ε > 0, and a certain δ > 0, we have

Pr

[
0 ≤ t ≤ T, ∀i ∈ S,

∣∣∣∣∣ 1

m

∑
u∈W

aiu(t)−E

[
1

m

∑
u∈W

Iiu(t)

]∣∣∣∣∣≤ε
]

= 1− o(n−δ).

Here, 1
m

∑
u∈W aiu(t) is our approximation of the state

density of W , and 1
m

∑
u∈W E[Iiu(t)] is the expected state

density that we want to compute.
By a simple modification of the proof, Theorem 1 can

also be applied to compute a weighted state density in
the case that there is a weight associated with each neigh-
boring node.

Outline of the proof. To prove the above theorem, we
prove Lemma 4, which states that for any node v ∈ V
and any time step t, the observed state density of all
neighboring nodes’ states, 1

dv

∑
u∈N(v) I

i
u(t), is close to

the expected state density, 1
dv

∑
u∈N(v) E[Iiu(t)], for all

nodes v ∈ V with high probability.
To prove Lemma 4, we consider the approximated

state density 1
dv

∑
u∈N(v) a

i
u(t), which is close to the

expected state density, and prove that it is close to
1
dv

∑
u∈N(v) I

i
u(t) with high probability.

Lemma 4 can be proven through mathematical induc-
tion. Lemma 2 is the first step in the inductive method;
in Lemma 2, we derive an error bound for the approx-
imated state density of weighted neighboring nodes at
t = 0. Lemma 3 is an inductive step that proves that
the one-time observed state density is close to the ap-
proximated state density at time t + 1 under the given
condition at time t.

To prove Theorem 1, we consider the following graph
G′ and apply Lemma 4. Suppose that a new node v′ /∈ V ,
which has only inward edges from u ∈W , is added to G.
We call this graph G′. Node v′ can be influenced by all
nodes in W but does not influence any nodes. Formally,
we define a directed graph G′ = (V ′, E′), where V ′ = V ∪
{v′} and E′ = E ∪ {euv′}∀u∈W . We will apply Lemma 4
to G′ to prove Theorem 1.

Formula (7) and the algorithm that computes aiv(t)
based on (7) can be understood as a generalized mean-
field approximation for a nonsymmetric network struc-
ture and arbitrary initial states. For example, if we con-
sider the simple voter model and assume that for each
i ∈ S, the {aiv(0)} are the same for all v ∈ V , then for
all times t and i ∈ S, the aiv(t) become the same for all
v, as in the usual mean-field approximation.

Proof of Theorem 1. We define

riv(t) =
1

dv

∑
u∈N(v)

ωuvI
i
u(t)

to denote the observed state density of v’s neighbor-
ing nodes with weights ωuv ≥ 0, (ωuv)∀u∈N(v) ∈ Kv.

By the linearity of expectation, we have E[riv(t)] =
1
dv

∑
u∈N(v) ωuvE[Iiu(t)]. We define

biv(t) =
1

dv

∑
u∈N(v)

ωuva
i
u(t)

as the approximation of riv(t). For the case in which all
weights ωuv are equal to 1, we denote the correspond-
ing quantities by r̄iv(t) and b̄iv(t). Let min(dv, v ∈ V ) =
dv,min.

Lemma 2 For any initial state probabilities {aiv(0)} and
any {ωuv}u∈N(v) ∈ Kv,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(0)− biv(0)
∣∣ ≤ ε0]

≥ 1− 2sn exp

(
−2ε0

2dv,min
4

)
. (8)

Lemma 2 holds for t = 0 and serves as the basis for
induction. We will now prove Ineq. (8), which shows
that the probability of satisfying

∣∣riv(0)− biv(0)
∣∣ ≤ ε0 is

sufficiently high.

The initial state sv(0) is determined only by the given
initial probabilities {aiv(0)}i∈S . The initial probabilities
for each node are given values and do not depend on
the initial probabilities for any other node. Therefore,
the initial states of all nodes are mutually independent.
We apply Hoeffding’s inequality since riv(0) can be de-
scribed as a linear combination of independent indica-
tor variables Iiv(0) for a given i ∈ S. Therefore, for all
v ∈ V and all i ∈ S, riv(0) =

∑
u∈N(v)

1
dv
ωuvI

i
u(0) and

Pr(ωuv

dv
Iiv(0) ∈ [0, ωuv

dv
]) = 1 are satisfied. Then, we have
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the following inequality at t = 0 for any i ∈ S:

Pr

∣∣∣∣∣∣ 1

dv

∑
u∈N(v)

ωuvI
i
u(0)− 1

dv

∑
u∈N(v)

ωuva
i
u(0)

∣∣∣∣∣∣ ≥ ε0


= Pr

∣∣∣∣∣∣ 1

dv

∑
u∈N(v)

ωuvI
i
u(0)− 1

dv

∑
u∈N(v)

ωuvE[Iiu(0)]

∣∣∣∣∣∣ ≥ ε0


≤ 2 exp

(
− 2ε0

2∑
u∈N(v) (ωuv/dv)

2

)
≤ 2 exp

(
−2ε0

2dv,min
4

)
.

(9)

Hoeffding’s inequality shows that the observed state den-
sity among v’s neighbors rarely deviates from the ex-
pected state density among those neighbors. By the
union bound, we obtain

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(0)− biv(0)
∣∣ ≥ ε0]

≤ 2sn exp

(
−2ε0

2dv,min
4

)
(10)

and

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(0)− E[riv(0)]
∣∣ ≤ ε0]

= Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(0)− biv(0)
∣∣ ≤ ε0]

≥ 1− 2sn exp

(
−2ε0

2dv,min
4

)
.

(11)

�

The next lemma is an inductive step that shows that if
the presented statement holds for some natural number
t, then it also holds for t+ 1.

Lemma 3 For t = 0, 1, 2, . . . , T , if
∣∣riv(t)− biv(t)∣∣ ≤ εt is

satisfied for all v ∈ V , all i ∈ S, and all {ωuv}u∈N(v) ∈
Kv, then for any {ωuv}u∈V ∈ Kv,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(t+ 1)− biv(t+ 1)
∣∣ ≤ εt+1

|∀v ∈ V,∀i ∈ S,
∣∣riv(t)− biv(t)∣∣ ≤ εt]

≥ 1− 2sn exp

(
−2εt

2dv,min
4

)
. (12)

Proof of this lemma is in appendix B.

Lemma 4 Let G = (V,E) be a given directed graph, and
let S be the set of state vectors, with n = |V | and s = |S|.
Suppose that dv = ω(log n) for all v ∈ V . If {f̄kv (·)}v∈V
has the stability property, then for any initial state prob-
abilities {aiv(0)}, any constant T ∈ N, any ε > 0, and a
certain δ > 0, we have

Pr
[
0 ≤ t ≤ T, ∀v ∈ V,∀i ∈ S,

∣∣r̄iv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

≥ 1− o(n−δ). (13)

We prove this lemma by applying mathematical in-
duction to Lemmas 2 and 3. The remaining proof of this
lemma is in appendix C.

Remaining proof of Theorem 1. Recall the graph
G′ = G ∪ v′ and v′ /∈ V , which has only inward edges
from u ∈ W . By applying Lemma 4 to graph G′, we
obtain, for any v ∈ V ′,

Pr
[
0 ≤ t ≤ T, ∀i ∈ S

∣∣āiv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

≥ Pr
[
0 ≤ t ≤ T, ∀v ∈ V ′,∀i ∈ S,

∣∣āiv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

= 1− o((n+ 1)−δ).

Therefore, for node v′,

Pr

[
0 ≤ t ≤ T, ∀i ∈ S,

∣∣∣∣∣ 1

m

∑
u∈W

aiu(t)−E

[
1

m

∑
u∈W

Iiu(t)

]∣∣∣∣∣ ≤ ε
]

≥ 1− o(n−δ). (14)

�

In the previous arguments, we have assumed that each
node has an independent initial state distribution aiv(0).
Note, however, that Theorem 1 is also applicable to a
model in which the initial states of the nodes are de-
terministic. Since deterministic initial node states are
expressed as aiv(0) = Iiv(0), Lemma 2 still holds when
the initial states of the nodes are given deterministically.

Corollary 5 (Single Monte Carlo simulation) Let G =
(V,E) be a given directed graph, and let S be the set
of state vectors, with n = |V | and s = |S|. Consider
a subset of nodes W ⊆ V , with m = |W |. Suppose
that m = ω(log n) and dv = ω(log n) for all v ∈ V .

If {f̄kv (·)}v∈V,k∈S has the stability property, then for any
initial state probabilities {aiv(0)}, any constant T ∈ N,
any ε > 0, and a certain δ > 0, we have

Pr

[
0 ≤ t ≤ T, ∀i ∈ S,

∣∣∣∣∣ 1

m

∑
u∈W

Iiu(t)−E

[
1

m

∑
u∈W

Iiu(t)

]∣∣∣∣∣≤ε
]

= 1− o(n−δ).

Here, 1
m

∑
u∈W Iiu(t) is the state density of W in one

Monte Carlo simulation. The above theorem states that
we can approximate the state density through just one
simulation of a Monte Carlo simulation because each ob-
served density 1

m

∑
u∈W Iiu(t) will have a similar value to

the expected state density with high probability.

V. EXPERIMENTAL RESULTS

In this section, we present the results of empirical ver-
ification of our theorems and algorithms. The models
we examine are the SIS model, the simple voter model,
and the DAU model described in previous sections. We
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will show that our approximation can well predict the
expected state density of a set of nodes.
Datasets. The datasets used in the experiments include
four synthetic random networks and two real networks.
The synthetic random networks were generated using
the Barabasi-Albert (BA) model and the Watts-Strogatz
(WS) model. We downloaded the real-world networks
from the Stanford Large Network Dataset Collection [29].
Slashdot is a technology-related news website known for
its specific user community. In 2002, Slashdot introduced
the Slashdot Zoo feature, which allows users to tag each
other as friends or foes. The corresponding network con-
sists of friend/foe links between Slashdot users. Gowalla
is a location-based social networking website where users
share their locations by checking in. Table I summarizes
the basic statistics of the networks used in our experi-
ments.

dataset type # of nodes # of edges
BA1000 undirected 1,000 3,990
BA10000 undirected 10,000 39,990
WS1000,10 undirected 1,000 10,000
WS10000,100 undirected 10,000 1,000,000

Gowalla undirected 196,591 950,327
Slashdot directed 77,360 905,468

TABLE I: Datasets

Experimental setup. For each experiment, we first
predicted the state density based on our approximation
asu(t). Next, we ran one Monte Carlo simulation. Isu(t)
is an indicator function indicating whether node u is in
state s at time t in a simulation run. Then, we ran 1, 000
additional Monte Carlo simulations to estimate the prob-
ability of each node being in each state in each time step.
More specifically, we used the relative frequency of node
u being in state s at time t as an estimate of E[Isu(t)].
According to the Chernoff bound, the relative error of
the above estimation method is insignificant; therefore,
we ignored it in our experimental analysis. For any given
subset W of nodes in the network, we compared our ap-
proximation, 1

|W |
∑
u∈W asu(t), and the result of a single

Monte Carlo simulation, 1
|W |

∑
u∈W Isu(t), with the true

expected state density, 1
|W |

∑
u∈W E[Isu(t)], for each state

s in each time step t. According to Theorem 1, there
should be no significant differences between these three
values with high probability.

A. Results for the SIS Model

In this subsection, we compare the results of our gener-
alized mean-field approximation (GMF), a single Monte
Carlo simulation run and pairwise(pair-quenched) ap-
proximation (PWA) for the SIS model. The model we
consider here has two states: a susceptible state, denoted
by S, and an infected state, denoted by I. Initially, all
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FIG. 1: ”S” state density for the SIS model with the
parametric value sets P1 and P2 and initial state

distribution D1 = (0.4, 0.6). (a) P1, BA10000, (b) P1,
Slashdot, (c) P2, BA10000, (d) P2, Slashdot.
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FIG. 2: Error with respect to the true expected density of
state S for the SIS model with parametric value sets (a) P1

and (b) P2 and initial state distribution D1 = (0.4, 0.6) on
the BA10000 dataset.

nodes in the network have a uniform initial state distri-
bution of D1 = (S = 0.4, I = 0.6).

Figure 1 shows the results obtained on the synthetic
undirected network BA10000 and on the real directed net-
work Slashdot. We use two sets of parametric values for
this model, denoted by P1 and P2. We set P1 = (β =
0.0005, γ = 0.01) and P2 = (β = 0.0005, γ = 0.0001).
Figure 2 show the differences in value between the true
state density and the results of the three approximation
methods with the parametric value sets P1 and P2.

For both sets of parametric values, there is no signif-
icant difference between the true expected state density
and the density predicted by generalized mean-field ap-
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FIG. 3: Error with respect to the true expected density of
state S at time t = 50 for the SIS model with a fixed value

of γ = 0.001, various values of β and initial state
distribution D1 = (0.4, 0.6).

proximation. The error of generalized mean-field approx-
imation is less than 0.1% for various experimental envi-
ronments. Pairwise approximation also approximates the
true expected state density with an error of less than
0.1% in most cases, similar to the generalized mean-
field approximation. Therefore, generalized mean-field
approximation method approximates the state density
under various SIS model parameters and able to perform
as good as the pairwise approximation. In addition, in
some cases, error of generalized mean-field approxima-
tion is smaller than the pairwise approximation. If the
infection probability β is large, as shown in Figures 3,
the error is drastically larger than in other cases. We
believe that the reason for this phenomenon is because
the experiment was conducted in a discrete environment.
The pairwise approximation assumes a continuous time
step, but larger β represents that the experiment move
away from continuous time step environment.

As shown in Figure 2, running a Monte Carlo simu-
lation once also yields an approximation of the true ex-
pected state density but with a larger error and greater
instability over time than generalized mean-field approx-
imation. Therefore running one Monte Carlo simulation
is one of the effective approximation although the error is
larger than that of generalized mean-field approximation.

B. Results for the Simple Voter Model

In this subsection, we present the results for a sim-
ple voter model with two states, the positive state and
the negative state. We also refer to this model as the
binary voter model. We focus on a special initial con-
dition such that each node initially has a probability of
0.5 of being positive and a probability of 0.5 of being

negative. In this case, we have E
[

1
|W |

∑
u∈W Iiu(t)

]
=

E
[

1
|W |

∑
u∈W Iiu(0)

]
for all W ⊆ V , t > 0 and s ∈

{positive,negative}.
Figure 4 shows the results for the binary voter model.

There is little difference between generalized mean-field
approximation and the expected state ratio on the vari-
ous networks. Therefore, generalized mean-field approx-
imation is very effective in predicting the expected state
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FIG. 4: Positive state density for the binary voter model
with datasets (a) WS1000,10 and (b) WS10000,100.

density in this experimental setting. In addition, these
experiments show how the accuracy of the prediction ob-
tained through one Monte Carlo simulation run depends
on the size of the graph. Recall that Corollary 5 pro-
vides a lower bound on the probability such that we can
predict the state density with a small error by running
one Monte Carlo simulation. For a given T , the lower
bound on this probability approaches 1 as the number of
nodes in the graph becomes sufficiently large. Figure 4
demonstrates the correctness of the corollary by showing
that the accuracy of the prediction obtained from a single
Monte Carlo simulation run does increase as the graph
size increases.

C. Results for the DAU Model

We show the results for the stochastic version of the
DAU model in this subsection. We examine how the re-
sults of a single Monte Carlo simulation behave for net-
works of different sizes and structures. In the experimen-
tal results, the states U , I and A represent the nonmem-
ber, inactive and active states, respectively.
Parametric values for the DAU model. We use
two sets of parametric values, denoted by P1 and P2.
We set P1 = (α = 0.2, β = 0.05, γ = 0.08, λ = 0.001)
and P2 = (α = 0.02, β = 0.05, γ = 0.001, λ = 0.08).
In accordance with the analysis of the DAU model,
the model with parametric value set P1 is characterized
as a model with self-sustainability and gradual word-of-
mouth growth, which means that the density of the active
state will converge to a positive value. By contrast, the
DAU model with parametric value set P2 is characterized
as a model with unsustainable and intense media-and-
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marketing-driven growth, which means that the number
of active users will initially increase but converge to zero
in the steady state.

We use a uniform initial state distribution to define
the initial conditions for the nodes. In a uniform initial
state distribution, all nodes have the same probability of
being in any given state. We use two uniform initial state
distributions, one for each set of parametric values.

Figures 5 and 6 show the results for all six datasets
with parametric value set P1 and a uniform initial state
distribution of D1 = (nonmember = 0.5, inactive =
0.4, active = 0.1). The initial state of each node is inde-
pendently chosen from the distribution D1. For example,
each node initially has a probability 0.4 of being inactive
and a probability 0.1 of being active. For simplicity, we
also write D1 as D1 = (0.5, 0.4, 0.1).

Figure 5 shows that for BA10000 and Gowalla tested,
we can accurately predict the state density in any time
step by running only one Monte Carlo simulation. The
results obtained on the WS1000,10, WS10000,100, BA1000
and Slashdot datasets are similar as shown in Figure 10 in
appendix. One should note that for real networks, even if
a network is weakly connected, there still exists a signif-
icantly large state density with very few incoming edges
because of the power-law degree distributions in real net-
works. For example, approximately 25% of the nodes in
the undirected Gowalla network have only one neighbor.
Figure 5 (b) show that even if the degree distribution of
a real network does not satisfy the minimum degree re-
quirement of Theorem 1, a single run of a Monte Carlo
simulation can still yield a highly accurate prediction of
the state density.

Figure 6 shows the results obtained when W consists
of the top 1%, top 5% and top 10% of the nodes ranked
by (in)degree.

Note that the state density of the nonmember state
converges to zero, while the state densities of the other
two states converge to one. Moreover, for the DAU
model, we are mainly interested in the fraction of users
who are active. Therefore, we show the fraction of active
users as a function of t. From Figure 6, we can observe
that when W contains at least the top 5% of the nodes
as ranked by degree, then a single Monte Carlo simula-
tion run can accurately predict the expected density of
the active state. If W contains only the top 1% of the
nodes as ranked by degree, then the predicted density
of active nodes may not always be accurate. This inac-
curacy arises because there is an implicit constraint on
the cardinality of W in our main theorem. However, in
this case, a single Monte Carlo simulation run can still be
used to predict the trend of the change in density as well
as the approximate density of active nodes in the steady
state.

We now consider another set of experimental configu-
rations. Figure 7 shows the results obtained on BA10000
and Gowalla with parametric value set P2 and a uni-
form initial state distribution of D2 = (nonmember =
0.7, inactive = 0.1, active = 0.2). The results obtained

0

0.25

0.5

0.75

1

0 50 100 150 200

S
ta

te
 D

e
n
si

ty
 

Time 

(a)

0

0.25

0.5

0.75

1

0 50 100 150 200

S
ta

te
 D

e
n
si

ty
 

Time 

(b)

FIG. 5: State density for the DAU model with the
self-sustainable parametric value set P1 and the initial state

distribution D1 = (0.5, 0.4, 0.1). The set W contains all
nodes with nonzero (in)degrees. (a) BA10000, (b) Gowalla.
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FIG. 6: State density for the DAU model with the
self-sustainable parametric value set P1 and the initial state
distribution D1 = (0.5, 0.4, 0.1). The set W contains the (a)

top 1%, (b) 5% or (c) 10% of the nodes as ranked by
(in)degree.

on the WS1000,10, WS10000,100, BA1000 and Slashdot
datasets are similar as shown in Figure 11 in appendix.
From Figure 7, we can see that for parametric value set
P2 and initial state distribution D2, we can accurately
predict the state density by running a Monte Carlo sim-
ulation only once. Moreover, the prediction is very accu-
rate for any arbitrary time step on all datasets tested.
Effect of initial conditions. We have previously con-
sidered two different uniform initial state distributions.
Now, we consider a nonuniform initial state distribution
as follows. For each network, the nodes with the top
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FIG. 7: State density for the DAU model with the
unsustainable parametric value set P2 and the initial state

distribution D2 = (0.7, 0.1, 0.2). The set W contains all
nodes with nonzero (in)degrees. (a) BA10000, (b) Gowalla.

50 highest degrees are initially selected as active nodes,
while all other nodes are initially in the “nonmember”
state. Figures 8 and 9 show the results obtained on the
BA10000 and Gowalla datasets with this initial condi-
tion. Here, the DAU model has parametric value set
P1. Figures 8 and 9 show that for all datasets, a sin-
gle Monte Carlo simulation run can provide an accurate
prediction of the density of any given state in the steady
state for the case in which W contains all nodes with
nonzero (in)degrees and for the case in which W con-
tains at least the top 10% of the nodes as ranked by
(in)degree. Figure 9 shows that if W contains a small
fraction of the nodes with the highest (in)degrees, e.g.,
the top 1% of the nodes, then a single Monte Carlo simu-
lation run can accurately predict the expected density of
the active state for most time steps. The results obtained
on the WS10000,100, Gowalla and Slashdot datasets are
similar.

Consider a given network G = (V,E). If the minimum
degree among all nodes in G is ω(log |V |), then the de-
gree requirement in Theorem 1 is satisfied. Then, for
any node set W containing a large number of the nodes
in V , a single Monte Carlo simulation run is sufficient
to accurately predict the expected state density in any
time step. Otherwise, suppose that the minimum degree
requirement in Theorem 1 is not satisfied for the given
network G. For example, the dataset may be very sparse,
or it may contain a large fraction of nodes with very low
(in)degrees. The experimental results demonstrate that
even in this case, for a given W containing a large state
density or nodes with high (in)degrees, a single Monte
Carlo simulation run is still sufficient to predict the state
density to a certain accuracy. Moreover, for the case in
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FIG. 8: State density for the DAU model with the
unsustainable parametric value set P1 and datasets (a)

BA10000 and (b) Gowalla. Initially, the nodes with the top
50 highest (in)degrees are selected as active nodes, while all

other nodes are in the “nonmember” state. The set W
contains all nodes with nonzero (in)degrees.
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FIG. 9: State density for the DAU model with the
unsustainable parametric value set P1 and dataset BA10000.

Initially, the nodes with the top 50 highest (in)degree are
selected as active nodes, while the other nodes are in the

“nonmember” state. The set W contains the (a) top 1%, (b)
5% or (c) 10% of the nodes as ranked by (in)degree.

which W contains only a small fraction of the nodes in
the network, e.g., only 1%, one Monte Carlo simulation
run is still sufficient to effectively predict the trend of the
change in the expected state density.
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VI. CONCLUSION

In this paper, we have presented a GOSM and ana-
lyzed the opinion spread size of GOSMs for general net-
work structures. Many discrete-time spreading models,
such as the voter model, the DAU model, the indepen-
dent cascade model, and the SIS model, can be formu-
lated as GOSMs. In addition, we have shown that many
well-known GOSMs have the stability property, which is
the GOSM equivalent of uniform continuity. We prove
that for a slightly dense network, our generalized mean-
field approximation method can successfully compute the
state density. Our approximation is applicable to all sta-
ble GOSMs, unlike the conventional mean-field approxi-
mation. Extensive experiments confirm that generalized
mean-field approximation method indeed computes the
state densities for the given nodes very well in practice.
We have shown that a single Monte Carlo simulation run
can also be used as a cost-efficient means of approximat-
ing the state density both theoretically and practically.
Our results can be applied to various practical problems
arising in social networks, including epidemic spreading
analysis, the influence maximization problem [30], and vi-
ral marketing [31]. Two possible avenues for future work
include relaxing the structure condition that requires a
slightly dense network and generalizing our results to
continuous-time Markovian opinion spreading models.
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Appendix A: Proof of Stability for GOSMs

1. General Voter Model

For example, we consider two cases of OSM, the gen-
eral voter model and the cascade model. First, we for-
mally prove that the general voter model is stable. Since
the DAU model is a special case of the general voter
model, the stability of the DAU model follows directly.

Lemma 6 If fkv (·) is given as (3) and for all v ∈ V ,∑
u∈N(v) ωuv

2 ≤ 4dv, then {f̄kv (·)}v∈V is stable.

Proof. With the Definition 1’s notation, let δ be

δ =
ε∑

i∈S
∑
j∈S 3pi,j,k

.

From the condition of stable property (5), we have for
all k ∈ S, all v ∈ V , and all {ω̄uv}u∈N(v) ∈ Kv,∣∣∣∣∣∣ 1

dv

∑
u∈N(v)

ω̄uvx
k
u −

1

dv

∑
u∈N(v)

ω̄uvy
k
u

∣∣∣∣∣∣ < δ.

The objective of this proof is to show Ineq. (6). That is,
for any v ∈ V , k ∈ S, and {ω̄uv}u∈N(v) ∈ Kv, we have

∣∣∣∣∣ 1

dv

∑
u∈N(v)

ω̄uv f̄kv (xv, {xu}u∈N(v))

− 1

dv

∑
u∈N(v)

ω̄uv f̄kv (yv, {yu}u∈N(v))

∣∣∣∣∣ ≤ ε.
We can rewrite 1

dv

∑
u∈N(v) ω̄uv f̄

k
u (xu, {xw}w∈N(u)) as

follows:

1

dv

∑
u∈N(v)

ω̄uv f̄ku (xu, {xw}w∈N(u))

=
1

dv

∑
u∈N(v)

ω̄uv
∑
i∈S

xiu

∑
j∈S

pi,j,k 1

du

∑
w∈N(u)

ωwux
j
w


=
∑
i∈S

∑
j∈S

pi,j,k
1

dv

∑
u∈N(v)

ω̄uvx
i
u

1

du

∑
w∈N(u)

ωwux
j
w.

(15)

We show the bound of (15) by using the condition of the
stable property. First, we show the upper bound of (15),
1
dv

∑
u∈N(v) ω̄uv f̄

k
u (xu, {xw}w∈N(u)).

From the condition of the general voter model in
this lemma, {ωuv}u∈N(v) ∈ Kv for all v ∈ V , i.e.∑
u∈N(v) ωuv

2 ≤ 4dv for all v ∈ V . Then, by the sta-

ble condition Ineq. (5), we have

1

du

∑
w∈N(u)

ωwux
j
w ≤

1

du

∑
w∈N(u)

ωwuy
j
w + δ. (16)

We know for all xjw ≤ 1 and all u ∈ V ,
∑
w∈N(u) ωwu = 1.

Then, we obtain

1

du

∑
w∈N(u)

ωwux
j
w ≤ 1. (17)

With {ω̄uv}u∈N(v) ∈ Kv and Ineq. (17),

∑
u∈N(v)

ω̄uv 1

du

∑
w∈N(u)

ωwux
j
w

2

≤ 4dv,
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i.e., {ω̄uv 1
du

∑
w∈N(u) ωwux

j
w}u∈N(v) ∈ Kv. Hence, by

Ineq. (5),

1

dv

∑
u∈N(v)

ω̄uvx
i
u

 1

du

∑
w∈N(u)

ωwux
j
w


≤ 1

dv

∑
u∈N(v)

ω̄uvy
i
u

 1

du

∑
w∈N(u)

ωwux
j
w

+ δ. (18)

We apply Ineqs. (16) and (18) on the Eq. (15) as follows:

1

dv

∑
u∈N(v)

ωuv f̄ku (xu, {xw}w∈N(u))

≤
∑
i∈S

∑
j∈S

pi,j,k

 1

dv

∑
u∈N(v)

ω̄uvy
i
u

1

du

∑
w∈N(u)

ωwuy
j
w


+
∑
i∈S

∑
j∈S

pi,j,k

 1

du

∑
w∈N(u)

ω̄uvy
i
u + 1

 δ.
(19)

Since for all yiu ≤ 1 and
∑
u∈N(v) ω̄uv ≤ 2dv for all v ∈ V ,

∑
i∈S

∑
j∈S

pi,j,k

 1

du

∑
w∈N(u)

ω̄uvy
i
u + 1

 δ ≤∑
i∈S

∑
j∈S

3pi,j,kδ.

(20)

By the definition of f̄ku (yu, {yw}w∈N(u)) and δ, we have

1

dv

∑
u∈N(v)

ω̄uv f̄ku (xu, {xw}w∈N(u))

≤ 1

dv

∑
u∈N(v)

ω̄uv f̄ku (yu, {yw}w∈N(u)) + ε. (21)

Using a similar method as above, the lower bound is given
as

1

dv

∑
u∈N(v)

ω̄uv f̄ku (xu, {xw}w∈N(u))

≥ 1

dv

∑
u∈N(v)

ω̄uv f̄ku (yu, {yw}w∈N(u))− ε. (22)

Then, we obtain the boundary equation∣∣∣∣∣ 1

dv

∑
u∈N(v)

ω̄uv f̄ku (xu, {xw}u∈N(u))

− 1

dv

∑
u∈N(v)

ω̄uv f̄ku (yu, {yw}u∈N(u))

∣∣∣∣∣ ≤ ε. (23)

This shows that Lemma 6 follows.

�

2. SIR Model

Next, we provide a proof that shows the SIR model
is stable. Since the SIS model and the multistate SIS
models are variations of the SIR model, a similar proof
of the stability can be applied to those models.

Lemma 7 If fkv (·) is given as Eq. (4) and
dv max(βuv, u ∈ N(v)) ≤ 2, βuv < 0.98 are satis-

fied for all v ∈ V , then {f̄kv (·)}v∈V is stable.

Proof. We use the same notations as in Definition 1.
If Ineq. (6) is derived from a given condition Ineq. (5),
Lemma 7 is proved. We prove this model has a stable
property by using Lemma 8.

Let us define

βuv,max = max(βuv, u ∈ N(v)),

κv = | log(1− βuv,max)|/2,

µuv = log(1− βuvy1u(t))− log(1− βuv)y
1
u(t),

µv =
1

dv

∑
u∈N(v)

µuv.

Lemma 8 With the condition of stable property (5), we
have for all v ∈ V ,∣∣∣∣∣∣ 1

dv

∑
u∈N(v)

log(1− βuvx1u)− 1

dv

∑
u∈N(v)

log(1− βuvy1u)

∣∣∣∣∣∣
≤ µv + κvδ. (24)

We prove Lemma 8 by showing the bound of

1

dv

∑
u∈N(v)

log(1− βuvxiu). (25)

Let us find the lower bound of (25) first. It is easy to
show

1

dv

∑
u∈N(v)

log(1− βuvxiu) ≥ 1

dv

∑
u∈N(v)

xiu log(1− βuv)

(26)
by using 0 ≤ βuv, x

i
u ≤ 1. The right-hand side of this

inequality can be rewritten as

1

dv

∑
u∈N(v)

x1u log(1− βuv)

=
−| log(1− βuv,max)|

2dv

∑
u∈N(v)

x1u
2 log(1− βuv)

−| log(1− βuv,max)|

=
−κv
dv

∑
u∈N(v)

x1u
log(1− βuv)
−κv

.

(27)
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Because 2 log(1−βuv)
−| log(1−βuv,max)| ≤ 2, { 2 log(1−βuv)

−| log(1−βuv,max)|}u∈N(v)

is in Kv. By the stable condition, we have

−κv
dv

∑
u∈N(v)

xiu
log(1− βuv)
−κv

≥ −κv

 1

dv

∑
u∈N(v)

yiu
log(1− βuv)
−κv

+ δ


=

1

dv

∑
u∈N(v)

y1u log(1− βuv)− κvδ

=

 1

dv

∑
u∈N(v)

log(1− βuv)y
1
u

− κvδ.
(28)

To prove this lemma, we want to estimate log(1−βuv)y
i
u

to log(1 − βuvyiu), so we use the µuv. The value of µuv
goes to 0 when βuv goes to 0 or yiu(t) goes to 0 or 1. For
example, for any yiu ∈ [0, 1], if βuv = 0.5, then µuv <
0.06, and if βuv = 0.1, then µuv < 0.0015. Therefore,

1

dv

∑
u∈N(v)

log(1− βuv)y
1
u − κvδ

=

 1

dv

∑
u∈N(v)

log(1− βuvy1u)

− µv − κvδ. (29)

Hence, we obtain the lower bound

1

dv

∑
u∈N(v)

log(1−βuvx1u)

≥ 1

dv

∑
u∈N(v)

log(1−βuvy1u)− µv − κvδ. (30)

We obtain the upper bound by reversing the method
derived from the lower bound. The upper bound of (25)
is given as

1

dv

∑
u∈N(v)

log(1− βuvx1u)

≤ 1

dv

∑
u∈N(v)

x1u log(1− βuv) + µv

≤ 1

dv

∑
u∈N(v)

y1u(t) log(1− βuv) + µv + κvδ

≤ 1

dv

∑
u∈N(v)

log(1− βuvy1u) + µv + κvδ.

(31)

Thus, we obtain the following bound inequality:∣∣∣∣∣∣ 1

dv

∑
u∈N(v)

log(1− βuvx1u)− 1

dv

∑
u∈N(v)

log(1− βuvy1u)

∣∣∣∣∣∣
≤ µv + κvδ. (32)

�

Next, we prove that (4) has a stable property by
Lemma 8. Let us define ε̄v = exp (dv(µv + κvδ)) − 1.
Then, ∣∣∣∣∣

∏
u∈N(v) (1− x1uβuv)∏
u∈N(v) (1− y1uβuv)

− 1

∣∣∣∣∣ ≤ ε̄v. (33)

In the SIR model, the probability function fkv is dif-
ferent for each state k. Hence, we need to show the
stable property for each state. Let us start with the
case of k = 0. With 0 ≤ βwu, x

1
w ≤ 1 for all βwu, x

1
w,∏

w∈N(u) (1− x1wβwu) is equal to or less than 1. From

the definition of stable property, {ω̄uv}u∈N(v) ∈ Kv. Us-
ing methods similar to those we applied from Ineq. (17) to
Ineq. (18), we have {ω̄uv

∏
w∈N(u) (1− x1wβwu)}u∈N(v) ∈

Kv and

1

dv

∑
u∈N(v)

ω̄uvx
0
u

∏
w∈N(u)

(1− x1wβwu)

≤ 1

dv

∑
u∈N(v)

ω̄uvy
0
u

∏
w∈N(u)

(1− x1wβwu) + δ. (34)

By Ineqs. (33) and (34), we have

1

dv

∑
u∈N(v)

ω̄uv f̄0v (xv, {xu}u∈N(v))

≤ 1

dv

∑
u∈N(v)

ω̄uvy
0
u(1 + ε̄u)

∏
w∈N(u)

(1− y1wβwu) + δ

=
1

dv

∑
u∈N(v)

ω̄uvy
0
u

∏
w∈N(u)

(1− y1wβwu)

+ δ +
1

dv

∑
u∈N(v)

ε̄u

ω̄uvy0u ∏
w∈N(u)

(1− y1wβwu)

.
(35)

Similar to Ineq. (21), ε̄u(·) is equal to or less than 2ε̄u.
Let us define ε̄ = max( 1

dv

∑
u∈N(v) ε̄u, v ∈ V ) and ε0 =

δ + 2ε̄. Then, we have

1

dv

∑
u∈N(v)

ω̄uv f̄0v (xv, {xu}u∈N(v))

≤ 1

dv

∑
u∈N(v)

ω̄uv f̄kv (yv, {yu}u∈N(v)) + ε0. (36)

The upper bound of the case of k = 1 can also be derived
easily by Ineq. (33), Ineq. (34) and γ ≤ 1. Define ε1 =
3δ + 2ε̄. Then,

1

dv

∑
u∈N(v)

ω̄uv f̄1v (xv, {xu}u∈N(v)) =

≤ 1

dv

∑
u∈N(v)

ω̄uv f̄1v (yv, {yu}u∈N(v)) + ε1. (37)
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Define ε2 = (1 + γ)δ. For the case of k = 2, the upper
bound is given as:

1

dv

∑
u∈N(v)

ω̄uv f̄2v (xv, {xu}u∈N(v))

≤ 1

dv

∑
u∈N(v)

ω̄uv
(
y1uγ + y2u

)
+ δ (γ + 1)

=
1

dv

∑
u∈N(v)

ω̄uv f̄2v (yv, {yu}u∈N(v)) + ε2.

(38)

Using a method similar to the above, the lower bound is
given as

1

dv

∑
u∈N(v)

ω̄uv f̄kv (xv, {xu}u∈N(v))

≥ 1

dv

∑
u∈N(v)

ω̄uv f̄kv (yv, {yu}u∈N(v))− εk, (39)

for all states k in S. Let ε = max(εk, k ∈ S) = ε1. We
finally obtain∣∣∣∣∣ 1

dv

∑
u∈N(v)

ω̄uv f̄kv (xv, {xu}u∈N(v))

− 1

dv

∑
u∈N(v)

ω̄uv f̄kv (yv, {yu}u∈N(v))

∣∣∣∣∣ ≤ ε. (40)

From the definition of ε̄v,

ε̄ = max

 1

dv

∑
u∈N(v)

(exp (duµu) exp (duκuδ)− 1), v ∈ V


≤ max (exp (duµu) exp (duκuδ)− 1) .

From the condition of Lemma 8, dv · βuv,max ≤ 1 for
all v ∈ V . Then, exp (duµu) is close to 1 and ε̄ '
exp (duκuδ)−1. Because max(duκu) < 4 where β < 0.98
and δ < 1, exp (duκuδ) = 1 + duκuδ + O((duκuδ)

2) ≤
1 + 16duκuδ. Then, from the definition of ε, for some
constant C, ε = 3δ+ 2ε̄ ≤ Cδ where dv ·βuv,max ≤ 1 and
β < 0.98. Hence, the SIR model also possesses the stable
property.

�

Appendix B: Proof of Lemma 3

If Iiv(t) and aiv(t) are given values, then with the nota-
tion of Definition 1, we can map Iiv(t) to xiv, a

i
v(t) to yiv

and εt to δ. In addition, {ωuv}u∈N(v) ∈ Kv for all v ∈ V .
Let κt+1 be ε in the notation of Definition 1. Then, the
condition of Lemma 3 can be applied to the condition for

the stability property given in (5). Hence, by the stabil-
ity property, for any deterministic values Iiv(t) and aiv(t)
and any {ωuv}u∈N(v) ∈ Kv, we have

∣∣∣ 1

dv

∑
u∈N(v)

ωuv f̄kv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v))

− 1

dv

∑
u∈N(v)

ωuv f̄kv ({aiv(t)}i∈S , {aiu(t)}i∈S,u∈N(v))
∣∣∣ ≤ κt+1.

(41)

From the definitions of fkv (·) and f̄kv (·), we have

E[Ikv (t+ 1)] = f̄kv ({Iiv(t)}i∈S , {Iiu(t)}i∈S,u∈N(v)).

Moreover, f̄kv ({aiv(t)}i∈S , {aiu(t)}i∈S,u∈N(v)) is defined as

akv(t+ 1) in (7). Hence, we have

∣∣E[rkv (t+ 1)]− bkv(t+ 1)
∣∣

=

∣∣∣∣ 1

dv

∑
ωuvE[Iku(t+ 1)]− 1

dv

∑
ωuva

k
u(t+ 1)

∣∣∣∣ ≤ κt+1,

(42)

which gives the bound on the difference between the ap-
proximated and expected state densities of v’s neighbors,
where for all v ∈ V and all i ∈ S, Iiv(t) is given and∣∣riv(t)− biv(t)∣∣ ≤ εt.

Since the sv(t) for all v ∈ V are given, i.e., Iiv(t) is given
for all v ∈ V and all i ∈ S, the sv(t + 1) are mutually
independent. Hence, from Hoeffding’s inequality, for any
v ∈ V and any i ∈ S, we have

Pr
[∣∣riv(t+ 1)− E[riv(t+ 1)]

∣∣ ≥ εt|{sv(t)}v∈V ]
≤ 2 exp

(
− 2εt

2∑
u∈N(v) (ωuv/dv)

2

)
≤ 2 exp

(
−2εt

2dv,min
4

)
.

(43)

We know the approximated probability aiv(t + 1),
which is a deterministic variable. Then, by Ineq. (42), the

∣∣∣∣ 1

dv

∑
Pr[Iku(t+ 1) = 1]− 1

dv

∑
aku(t+ 1)

∣∣∣∣
are small, where the sv(t) for all v ∈ V are given.

Ineq. (43) is valid for all given Iiv(t); therefore,
Ineq. (43) is also valid for all given Iiv(t) that satisfy∣∣riv(t)− biv(t)∣∣ ≤ εt, ∀v ∈ V . If the probability of riv(t+1)
lying outside the bound is smaller than some specific
value for all cases of siv(t), then we can say that the prob-
ability of riv(t+1) lying outside the bound is smaller than
that specific value without knowing siv(t). Therefore, by
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applying Ineq. (42) to Ineq. (43), we obtain

Pr
[∣∣riv(t+ 1)− biv(t+ 1)

∣∣ ≥ εt + κt+1

|∀v ∈ V,∀i ∈ S,
∣∣riv(t)− biv(t)∣∣ ≤ εt]

≤ Pr
[∣∣riv(t+ 1)− E[riv(t+ 1)]

∣∣ ≥ εt
|{sv(t)}v∈V ,∀v ∈ V,∀i ∈ S,

∣∣riv(t)− biv(t)∣∣ ≤ εt]
≤ 2 exp

(
−2εt

2dv,min
4

)
. (44)

Let εt+1 = εt + κt+1. By the union bound, we have

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(t+ 1)− biv(t+ 1)
∣∣ ≤ εt+1

|∀v ∈ V,∀i ∈ S,
∣∣riv(t)− biv(t)∣∣ ≤ εt]

≥ 1− 2sn exp

(
−2εt

2dv,min
4

)
. (45)

�

Appendix C: Proof of Lemma 4

Lemma 2 gives the proof at t = 0. Since
E[riv(0)] = biv(0), if

∣∣riv(0)− biv(0)
∣∣ ≤ ε0 is satisfied, then∣∣riv(0)− E[riv(0)]

∣∣ ≤ ε0 is also satisfied. Thus,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣riv(0)− E[riv(0)]
∣∣ ≤ ε0]

≥ 1− 2sn exp

(
−2ε0

2dv,min
4

)
. (46)

To prove that this inequality holds for t = 1, . . . , T , let
us start with Lemma 3. By Lemma 3, riv(t+ 1) approx-
imates biv(t + 1) with high probability if the differential
between the densities riu(t) and biu(t) at the previous time
is within a small error bound. By applying the inductive
approach to Lemma 3, we find that if

∣∣riv(0)− biv(0)
∣∣ ≤ ε0

is satisfied, then we have

Pr
[
1 ≤ t ≤ T, ∀v ∈ V,∀i ∈ S,

∣∣riv(t)− biv(t)∣∣ ≤ εt]
≥

T∏
t=1

(
1− 2sn exp(−2εt−1

2dv,min
4

)

)
. (47)

For any {ωuv}u∈N(v) ∈ Kv, Ineq. (12) holds. This
statement implies that Ineq. (12) holds when ωuv = 1 for
all v ∈ V and all u ∈ N(v). In other words,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣r̄iv(t+ 1)− b̄iv(t+ 1)
∣∣ ≤ εt+1

|∀v ∈ V,∀i ∈ S,
∣∣riv(t)− biv(t)∣∣ < εt

]
= Pr

[
∀v ∈ V,∀i ∈ S, |riv(t+ 1)− biv(t+ 1)| ≤ εt+1

|∀v ∈ V,∀i ∈ S,
∣∣riv(t)− biv(t)∣∣ < εt

]
. (48)

Under the condition that
∣∣riv(t)− biv(t)∣∣ ≤ εt for all

v ∈ V and all i ∈ S, E[r̄iv(t+1)] without a given sv(t) lies
between the maximum and minimum cases of E[r̄iv(t+1)],
where sv(t) is given for all v ∈ V , i.e., is bounded within
b̄iv(t+ 1)± κt+1 according to Ineq. (42). Hence,

Pr
[
∀v ∈ V,∀i ∈ S,

∣∣r̄iv(t+ 1)− E[r̄iv(t+ 1)]
∣∣ ≤ εt+1+κt+1

|∀v ∈ V,∀i ∈ S,
∣∣r̄iv(t)− b̄iv(t)∣∣ ≤ εt]

≥ Pr
[
∀v ∈ V,∀i ∈ S,

∣∣r̄iv(t+ 1)− b̄iv(t+ 1)
∣∣ ≤ εt+1

|∀v ∈ V,∀i ∈ S,
∣∣r̄iv(t)− b̄iv(t)∣∣ ≤ εt]

(49)

follows. By Ineqs. (47) and (49) and Eq. (48), if the
condition

∣∣riv(0)− biv(0)
∣∣ ≤ ε0 is satisfied for all v ∈ V

and all i ∈ S, we have

Pr
[
1 ≤ t ≤ T, ∀v ∈ V,∀i ∈ S,

∣∣r̄iv(t)− E[r̄iv(t)]
∣∣ ≤ εt + κt

]
≥

T∏
t=1

(
1− 2sn exp

(
−2εt−1

2dv,min
4

))
. (50)

Let us define ε = max(εt +κt) = εT +κT . The minimum
of all εt is ε0. Combining Ineqs. (46) and (50) yields

Pr
[
0 ≤ t ≤ T−1,∀v ∈ V,∀i ∈ S,

∣∣r̄iv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

≥
T−1∏
t=0

(
1− 2sn exp

(
−2ε0

2dv,min
4

))
≥ 1− 2Tsn exp

(
−2ε0

2dv,min
4

)
(51)

and

Pr
[
0 ≤ t ≤ T, ∀v ∈ V,∀i ∈ S,

∣∣āiv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

≥ 1− 2(T )sn exp

(
−2ε0

2dv,min
4

)
. (52)

If dv,min = τ log n for some constant τ > 0, then we
have

Pr
[
0 ≤ t ≤ T, ∀v ∈ V,∀i ∈ S,

∣∣āiv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

≥ 1− 2Tsn(1−2ε0
2τ/4). (53)

Based on the condition of Theorem 1, dv,min ≥ τ log n
for all τ > 0 as n goes to ∞. Let δ = −1 + 2ε0

2τ/4.
Then, δ goes to ∞ as τ goes to ∞. Thus, we have

Pr
[
0 ≤ t ≤ T, ∀v ∈ V,∀i ∈ S,

∣∣āiv(t)− E[r̄iv(t)]
∣∣ ≤ ε]

= 1− o(n−δ). (54)

�
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Appendix D: Additional Experimental Results
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FIG. 10: Results for the DAU model with the
self-sustainable parametric value set P1 and the initial state

distribution D1 = (0.5, 0.4, 0.1). The set W contains all
nodes with nonzero (in)degrees. (a) WS1000,10, (b)

WS10000,100, (c) BA1000, (d) Slashdot.
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FIG. 11: Results for the DAU model with the unsustainable
parametric value set P2 and the initial state distribution
D2 = (0.7, 0.1, 0.2). The set W contains all nodes with

nonzero (in)degrees. (a) WS1000,10, (b) WS10000,100, (c)
BA1000, (d) Slashdot.
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FIG. 12: Results for the DAU model with the unsustainable
parametric value set P1 and gowalla dataset. Initially, the
nodes with the top 50 highest (in)degree are selected as

active nodes, while the other nodes are in the “nonmember”
state. The set W contains the (a) top 1%, (b) 5% or (c) 10%

of the nodes as ranked by (in)degree.
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