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Abstract

This paper proposes a novel algorithm for solving NP-hard constrained discrete
minimization problems whose unconstrained versions are solvable in polynomial
time such as constrained submodular function minimization. Applications of our
algorithm include constrained MAP inference in Markov Random Fields, and en-
ergy minimization in various computer vision problems. Our algorithm assumes
the existence of a polynomial time oracle for computing the Lagrangian dual of
the constrained optimization problem. One of the key properties of our algorithm
is its ability to compute minimizers for several different constraint instances si-
multaneously. We show that our algorithm isolates all the constraint instances for
which strong duality holds, and provides a lower bound for any specific constraint
instance. We also developed a variant of the algorithm that is able to efficiently
compute a lower bound for a specific constraint instance using a cutting plane
scheme. We demonstrated the efficacy of our approach by showing how it can be
applied to the image segmentation problem in computer vision.

1 Introduction

Constrained discrete optimization is a key tool in various fields, including machine learning and
computer vision [5, 8]. In contrast to problems defined over continuous spaces such as linear pro-
gramming for which many efficient polynomial time methods have been developed [7, 1], there are
few known efficient methods for exact constrained discrete optimization, where even with a simple
objective function and constraints the problem is usually NP-hard.

Unconstrained discrete optimization problems such as submodular function minimization (SFM)
have been extensively studied in the Operations Research literature. Many important problems in
machine learning can be formulated as SFM [3, 12]. For instance, Maximum a Posterior (MAP)
inference in many Markov Random Fields (MRF) models in computer vision can be performed by
unconstrained minimization of submodular functions [11].

In various real world problems, some prior knowledge about the statistic of the desired solution are
available. For instance, in the case of the foreground-background image segmentation problem, we
may know the exact shape and size of the object being segmented, and thus want to be able to find the
most probable solution that has a particular area (number of foreground pixels) and boundary length
(number of discontinuities). In such cases, we need to be able to make solutions from the random
field model which are consistent with this prior knowledge about the statistics of the solution.

In this paper, we tackle the problem of minimizing an objective function defined over a discrete
space under multiple constraints. Solving this problem provides a way to deal with problems whose
unconstrained variants are polynomial time solvable, but their constrained versions are NP-hard.
One of the most popular approaches for such constrained discrete optimization is the convex relax-
ation with rounding [2, 8]. Although it efficiently computes a rounded solution from the relaxed
problem for multiple linear constraints, it cannot deal with non-linear equality constraints in gen-
eral since the feasible region may become non-convex. On the other hand, our algorithm can deal
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with a larger class of constraints such as non-linear equality, and directly solve the discrete problem
rather than continuous relaxation and rounding. Using dual space search, our algorithm computes
minimizers for different constraint instances simultaneously, leading to isolating all the constraint
instances for which strong duality holds. We also propose a variant for maximizing the dual, provid-
ing a lower bound of the constrained problem with any specific constrained instance. The algorithm
only requires a polynomial time oracle to compute the Lagrangian dual of the primal problem for any
point. Applications of our algorithm include constrained versions of many fundamental problems
such as the shortest path, st-mincut, and minimum spanning tree.

Related work A number of methods have been tried to obtain better labeling solutions by infer-
ring the MAP solution from a restricted domain of solutions which satisfy some constraints. Among
them, solutions to image labeling problems which have a particular distribution of labels [13] has
been widely studied. More specifically, for the problem of foreground/background image segmen-
tation, the most probable segmentation under the ‘label count’ constraint, i.e. a specific number of
pixels take the foreground label, have been shown to be closer to the ground truth [10, 12]. Another
example is the silhouette constraint which has been used for the problem of 3D reconstruction [9].

The work most closely related to ours is the parametric mincut algorithm for constrained submodu-
lar function minimization [12]. This method can deal with the st-mincut problem under a constraint∑
i xi = k, which means that it finds a mincut in which exact k nodes belong to one part of the cut.

It computes several solutions for different k values efficiently, and can partly handle an inequality
constraint of the form

∑
i xi ≤ k. Further, the parametric mincuts method shows generally how

a problem with one constraint can be solved. Although many studies have considered constraints
when optimizing discrete functions, there has been no integrated framework to deal with multiple
constrained discrete optimization. We develop a novel algorithm for general discrete optimization
problems, which can be considered as a generalization of the parametric mincut algorithm for mul-
tiple constraints.

2 Setup

Consider a problem to minimize a pseudo-Boolean function f : {0, 1}n → R under multiple con-
straints.

min
x∈{0,1}n

{f(x) : hi(x) = bi, 1 ≤ i ≤ m} , (1)

where x ∈ {0, 1}n, for 1 ≤ i ≤ m, hi : {0, 1}n → R and bi ∈ R, and m is a constant. We
denote (h1(x), . . . , hm(x)) by H(x). We first consider equality constraints, and we show that our
algorithm can be generalized to inequality constraints in Section 3.3.

To solve (1), we consider the following Lagrangian dual g of f .

g(λ) = min
x∈{0,1}n

L(x, λ), (2)

where
L(x, λ) = f(x) + λT (H(x)− b). (3)

As in the continuous minimization, maximizing g over λ provides a lower bound for (1). First we
define the following.
Definition 1 (Characteristic Set). The Characteristic Set of g is define by

χg =
⋃

λ∈Rm

argmin
x

L(x, λ). (4)

We abuse the notation argminx L(x, λ) to refer to a set of x’s including all ties. Note that g is defined
over a continuous space while f is defined over a discrete space. Then, the following Lemma holds.
Lemma 1. Let x∗ ∈ χg and b∗ = H(x∗). Then f(x∗) = minx∈{0,1}n {f(x) : H(x) = b∗} [4].

Our goal is to compute the characteristic set χg . Note that χg does not depend on the constraint
instance b. Therefore, computing the characteristic set χg for any fixed b is indeed equivalent to
solving (1) for many b values. Since L(x, λ) for a fixed x is linear in λ, g can be considered as
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a polytope which is the intersection of finite number of hyperplanes in Rm+1. In Section 3.1, we
regard b = 0 unless there is explicit specification. An important implication of χg is:

g(λ) = min
x∈{0,1}n

L(x, λ) = min
x∈χg

L(x, λ), (5)

which means that minx∈{0,1}n L(x, λ) indeed depends on a much smaller set χg . In Section 4, we
show that |χg| is polynomially bounded in n for image segmentation in computer vision with many
interesting constraints.

3 Our Algorithms

3.1 Algorithm for Computing χg

In this section, we describe our algorithm which computes the characteristic set χg . we assume that
for a large enough set S ⊂ Rm, there is an oracle to compute the Lagrangian dual g of f efficiently
for any fixed λ ∈ S. For simplicity, we assume S = [−M,M ]m for large M . We denote the oracle
call by a function defined by

O(λ) = argmin
x∈{0,1}n

L(x, λ). (6)

For example, such an oracle exists when L(λ, x) is submodular over x for any fixed λ ∈ Rm.
Basically, our algorithm decides λ’s in S for which the oracle is called. Later we prove that the
number of oracle calls in our algorithm to compute χg is polynomial in |χg|. Depending on whether
an oracle outputs all ties or not, our algorithm may not compute x ∈ χg such thatL(x, λ) ≥ L(x′, λ)
for all x′ ∈ χg and λ ∈ S. Note that even if such x might not be computed, our algorithm still
computes minimizers for all λ ∈ S. Before describing the algorithm in detail, first we define an
induced dual gX of a given dual g : Rm → R on X ⊆ {0, 1}n.

Definition 2 (Induced dual of g on X). Let g : Rm → R be the Lagrangian dual of f . The induced
dual gX of g is defined by

gX(λ) = min
x∈X

L(x, λ). (7)

From the definition of χg , note that g = g{0,1}n = gχg
. For each x ∈ {0, 1}n, the corresponding

hyperplane Px is defined by:

Px = {(λ, z) ∈ Rm+1 : λ ∈ Rm, z = L(x, λ)}. (8)

For convenience, we will denote any p ∈ Rm+1 by (λp, zp) where λp ∈ Rm is the first m coordi-
nates of p and zp ∈ R is the (m + 1)-th coordinate of p. Since each x ∈ {0, 1}n corresponds to a
hyperplane in (m + 1)-dimension and {0, 1}n is finite, g consists of the boundary of the polytope
from (2). Then χg corresponds to the collection of m-dimensional facets of that polytope. Note
that when b 6= 0 in (3), only a linear term −λT b is added to g(λ). Thus, χg corresponding to the
boundary m-dimensional facets of g is invariant over b.

To compute χg , we use a structure called skeleton defined below. Intuitively, the skeleton is a
collection of vertices and edges of the polytope by g.

Definition 3 (Proper convex combination). Given x, x1, . . . , xk ∈ R`, x is a proper convex combi-
nation of {xi : 1 ≤ i ≤ k} if x =

∑k
i=1 αixi for some α ∈ (0, 1)k with

∑k
i=1 αi = 1.

Definition 4 (Skeleton of an induced dual gX over S). For a given induced dual gX : Rm → R, let
ΓX(S) = {q ∈ Rm+1 : λq ∈ S, zq ≤ gX(λq)}, and for u, v ∈ ΓX(S), e(u, v) ∈ ΓX(S) is the line
segment connecting u and v. The skeleton of gX is GgX = (VgX , EgX ) satisfying the followings.

• VgX ⊂ ΓX(S), and v ∈ VgX if and only if v is a proper convex combination of U ⊆ ΓX(S)
implies that U = {v},

• EgX = {e(u, v) : u, v ∈ VgX , y ∈ e(u, v) is a proper convex combination of W (y) ⊆ ΓX(S)
implies that W (y) ⊆ e(u, v)} ∪ {e(u, v) : u ∈ VgX , λu ∈ {−M,M}m, v = (λu,−M)}.

Initially, the algorithm begins with X = {x0} and G = (V, E) where x0 is the output of the oracle
call for a λ0 ∈ {−M,M}m. Let V = {v1, . . . , v2m} ⊂ Rm+1 where {λvi : 1 ≤ i ≤ 2m} =
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ComputeCharSet

Input: Oracle O
Output: X,G = (V, E)

1 (X,G)← InitSkeleton()
2 Give V an arbitrary order
3 foreach v ∈ V in the order do
4 xv = O(λv)
5 if Pxv

(λv) < zv then
6 X = X ∪ {xv}
7 V+ = E ∩ Pxv

is appended to V in arbitrary order
8 V− = {u ∈ V : zu > Pxv (λu)} is removed from V
9 E− = {e(u1, u2) ∈ E : u1 ∈ V− or u2 ∈ V−}

10 E+ = {e(u1, u3) : ∃ e(u1, u2) ∈ E−, u3 = e(u1, u2) ∩ Pxv}
11 E = E ∪ ConvEdge(V+) ∪ E+ − E−
12 end
13 end

Figure 1: Pseudocode of the algorithm computing χg

{−M,M}m, and zvi = Px0
(λvi) for 1 ≤ i ≤ 2m. Let E = EgX . Note that G = GgX , the skeleton

of gX . This initialization is denoted by InitSkeleton() and it returns X and G. Figure 1 describes
the algorithm. Here, ConvEdge(V+) is the set of edges the convex hull of V+. Then, we obtain the
following Theorems whose proofs are provided in [6].

Theorem 1. When ComputeCharSet terminates with X and G = (V, E), X = χg .

Theorem 2. The number of oracle calls in ComputeCharSet is |Vg|+ |χg|.

As we have mentioned above, each x ∈ χg corresponds to a facet of an (m+1)-dimensional convex
polytope. Since a vertex is determined by the intersection ofm+1 facets, at the end of our algorithm,
|Vg| is bounded by O(|χg|m+1). Thus, the query complexity becomes O (poly(|χg|)).

3.2 Algorithm for a Specific Constraint Instance

In this section, we explain how our algorithm is modified to obtain a lower bound of (1) for any
specific constraint instance b ∈ Rm. Note that we have assumed b = 0 because we focused on
computing χg which is invariant over b. For a given b, if a corresponding optimal solution is in
χg , the computed lower bound is the same as the minimum value of the primal problem. Our
modification exploits concavity of the dual and the weak duality stating that the dual maximum is a
lower bound of the primal minimum. The modification is as follows.

• The initial vertex set is changed to V ′ = {v}where zv ≥ zu for all u ∈ V , and V is the ordinary
initial skeleton vertex.

• Line 7 of Figure 1 is changed to “one of v ∈ V+ such that zv ≥ zu for all u ∈ V+ is added to
V”.

With this modified algorithm, the following Lemma holds, and the proof is provided in [6].

Lemma 2. When the algorithm terminates, for the last v∗, zv∗ = g(λv∗) = maxλ g(λ).

Note that this modified algorithm uses much less number of oracle calls than |χg|, which leads to fast
computation of the maximum value of g and a corresponding primal solution. The modified algo-
rithm can be considered as an efficient implementation of the cutting plane method for constrained
discrete optimization [4]. While the cutting plane method computes the maximum of the dual by
linear programming with computed hyperplanes at each time, our algorithm computes it efficiently
by keeping and updating the skeleton of the dual.
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3.3 Algorithm for Inequality Constraints

Our algorithm can also deal with problems having inequality constraints by inserting a slack vari-
able. Let us consider the following problem.

min
x
{f(x) : b− k ≤ H(x) ≤ b} , (9)

where k ∈ Rm. First we transform the problem to a problem with equality constraints using a slack
variable y ∈ Rm as follows.

min
x,y

{
f̂(x, y) : H(x) + y = b

}
, (10)

where y ∈
∏m
i=1[0, ki], and f̂(x, y) = f(x). Let us consider the following Lagrangian: L̂(x, y, λ) =

f̂(x, y)+λT (H(x)+y−b). For a minimizer (x∗, y∗) of L̂ for a fixed λ, it always holds that y∗i = 0
for λi > 0, y∗i = ki for λi < 0, and y∗ can be any number in [0, ki] for λi = 0. Hence, y∗ only
depends on λ. Then, we obtain the following.

ĝ(λ) = min
x,y∗

{
f(x) + λT (H(x) + y∗ − b)

}
. (11)

Then, maxλ ĝ(λ) is a lower bound of (9). Since y∗ is determined only by λ, ĝ(λ) can be computed
by the same oracle for g(λ). Note that χĝ =

⋃
λ∈S argminx,y∗ L̂(x, y∗, λ), which can be computed

by our algorithm.

4 Application to Image Processing
In computer vision, discrete minimization has become a key tool for many fundamental problems
such as image segmentation, 3D-reconstruction and stereo. In this section, we explain how our
algorithm can be applied to energy minimization problems in computer vision by an example of the
image segmentation problem.

The foreground-background(fg-bg) image segmentation problem is to divide a given image to a
foreground(object) and a background. This can be done by labelling all pixels such that 1 is assigned
to foreground pixels and 0 is assigned to background pixels. For this problem, one popular approach
is to consider an image as a grid graph in which each node has four neighbours, and minimize an
energy function of the following form.

f(x) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj), (12)

where all φij’s are submodular. The unary terms of the functions encode how likely each pixel
belongs to the foreground or background objects, while the pairwise terms encode the smoothness
of the boundary of the objects. It is well known that (12) can be minimized efficiently by reducing
it to a st-mincut problem [11].

A natural constraint to enforce in the fg-bg segmentation problem is a particular size for the fore-
ground object in the image, represented by

∑
i∈V xi = b1. This approach has been extensively

studied in computer vision when there is prior knowledge about the object size [13, 12]. The seg-
mentation can also be constrained to be consistent with other statistics related to the shape of the
object such as the mass center and covariance [8]. The mass center is the means of the vertical
and horizontal coordinates of the object. This is one of easiest constraints to obtain from the user,
for example, by drawing a circle roughly containing the object. Let vi and hi denote the vertical
and horizontal coordinates of a pixel i, respectively. Then the mass center can be represented by∑
i∈V

vixi∑
i∈V xi

= b2 and
∑
i∈V

hixi∑
i∈V xi

= b3. The covariance constraint represents the “covari-

ance” of the object coordinates, which is represented by
∑
i∈V

xi(vi−µv)(hi−µh)∑
i∈V xi

= b4 for some
µv and µh. We can also define the variance constraint for the vertical and horizontal coordinates
in the similar way. Note that all of these constraints are linear on variables xi’s, and hence adding
them to (12) with any constant factor λi does not affect submodularity. Thus, if we consider any
combination of these constraints, the search range S for our algorithm can be an arbitrary region of
the dual space.

In many scenarios, researchers are also interested in ensuring that the boundary of the object in the
segmentation is of a particular specified length. As the object boundary can be measured by counting
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(a) (b) (c) (d) (e)

Figure 2: (a) We used one grey scale image while varying the resolution. The energy function in
(12) is used with φi(xi) = 255−2Ii, and φij(xi, xj) = 65|xi−xj | where Ii is a color in [0, 255] of
a pixel i. We consider the constraints in (13). The graph shows the size of computed characteristic
set χg and the running time over varying image size. (b) original image (size: 321 × 481). (c)
ground truth. (d) segmentation without constraint. (e) segmentation with specific size and boundary
inequality constraints. The running time was 2.60 seconds.

the number of pairs of adjacent variables having different labels, we can encode this constraint as:∑
(i,j)∈E |xi−xj | = b5. While using the boundary constraint, the search range S may be restricted

to ensure that L(x, λ) is submodular over x. Note that convex relaxation based approaches [2, 8]
cannot deal with this type of constraint. The following is an example of a Lagrangian containing the
size and boundary constraints.

L(x, λ) = f(x) + λ1
∑
i∈V

xi + λ2
∑

(i,j)∈E

|xi − xj |. (13)

To apply our algorithm to (13), S should be a subset of R × [K,∞], not R2, where K < 0 is the
smallest real number making (13) submodular for all λ ∈ S. Note that our algorithm can deal with
inequality constraints such that C1 ≤

∑
i∈V xi ≤ C2 and C3 ≤

∑
(i,j)∈E |xi − xj | ≤ C4. We

performed simulations on image segmentation with (13). Figure 2 shows the simulation results.
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