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Abstract—In this paper, we consider the MAX-WEIGHT protocol
for routing and scheduling in wireless networks under an adver-
sarial model. This protocol has received a significant amount of
attention dating back to the papers of Tassiulas and Ephremides.
In particular, this protocol is known to be throughput-optimal
whenever the traffic patterns and propagation conditions are
governed by a stationary stochastic process. However, the standard
proof of throughput optimality (which is based on the negative
drift of a quadratic potential function) does not hold when the
traffic patterns and the edge capacity changes over time are gov-
erned by an arbitrary adversarial process. Such an environment
appears frequently in many practical wireless scenarios when the
assumption that channel conditions are governed by a stationary
stochastic process does not readily apply. In this paper, we prove
that even in the above adversarial setting, the MAX-WEIGHT

protocol keeps the queues in the network stable (i.e., keeps the
queue sizes bounded) whenever this is feasible by some routing
and scheduling algorithm. However, the proof is somewhat more
complex than the negative potential drift argument that applied
in the stationary case. Our proof holds for any arbitrary interfer-
ence relationships among edges. We also prove the same stability
of -approximate MAX-WEIGHT under the adversarial model.
We conclude the paper with a discussion of queue sizes in the
adversarial model as well as a set of simulation results.

Index Terms—Max-Weight, routing, scheduling, stability,
wireless network.

I. INTRODUCTION

W E CONSIDER the performance of the Max-Weight
routing and scheduling algorithm in adversarial

networks. Max-Weight has been one of the most studied al-
gorithms [7], [15], [16] since it was introduced in the works
of Tassiulas and Ephremides [20], [21] and Awerbuch and
Leighton [8], [9]. The key property of Max-Weight is that,
for a fixed set of flows, it is throughput-optimal in stochastic
networks in a wide variety of scenarios [20], [11], [18], even
though it may fail to provide maximum stability in a scenario
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with flow-level dynamics [22]. That is, for a fixed set of flows,
the Max-Weight protocol keeps the queues in the network
stable whenever this is feasible by some routing and scheduling
algorithm. Moreover, we can obtain a bound on the amount of
packets in the system that is polynomial in the network size.
However, the standard analyses of the Max-Weight algorithm

make critical use of the fact that the channel conditions and the
traffic patterns are governed by stationary stochastic processes.
The stationary stochastic model deals with the case where traffic
patterns do not deviate much from their time-average behavior.
On the other hand, we shall consider the worst-case traffic sce-
nario modeled by adversarial models. If an adversary chooses
traffic patterns and interference conditions, and edge capacities
change over time in an arbitrary way, then the question remains
as to whether a system running under Max-Weight can be un-
stable. It is important to model the worst (adversarial) case be-
cause nonevenly distributed traffic patterns are observed over
time in many queuingmodels. A typical adversarial scenario is a
military communication network, in which there could exist ad-
versarial jammers. Once it is jammed, the victim link will have
zero capacity or very weak capacity. Ensuring stability under
the worst case is crucial in many such systems. The aim of the
current paper is to resolve this question.
Previous work has shed some light on this issue. In [5], it was

shown that for a single transmitter sending data over one-hop
edges to a set of mobile users, if the set of nonzero channel rates
can approach zero arbitrarily closely, then no protocol can be
stable. However, since this is a fairly unnatural condition, [5]
looked at the more natural setting in which the set of all rates
is finite. For this case, a stable protocol was given, but it was a
somewhat unnatural protocol that relies on a lot of bookkeeping.
The stability of a more natural protocol such asMax-Weight was
left unresolved.
Previous work has looked at the stability of Max-Weight in

adversarial settings. In particular [1] showed stability for static
networks (with adversarial traffic), and [7] and [2] showed
stability in dynamic networks for both single-commodity
and multi-commodity demands, respectively. However, these
proofs only applied to the case when each edge could be sched-
uled independently (in other words, the decision to transmit on
an edge has no affect on the edge rates on other edges), This
is obviously not a suitable model for wireless transmissions in
which edges can clearly affect each other. As discussed in [5],
the stability of Max-Weight was not known in the adversarial
setting for the case of interfering edges, even if we only have
one node that transmits.
In this paper, we resolve the question of the stability of

Max-Weight in general adversarial networks. We present
an adversarial model of interfering edges and show that the
Max-Weight policy always maintains stability as long as we are

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1860 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 6, DECEMBER 2014

strictly within the network stability region, even when the sta-
bility region is allowed to change over time. We consider a very
general adversarial model that can be applied to all the possible
interference conditions, including -hop interference [19],
independent set constraints [12], [13], and node-exclusive
constraints [3], [4], [14], [17]. Our proof gives a bound on
the queue size that is exponential in the network size. (This
is unlike the stochastic case.) However, we also demonstrate
(using an example inspired by [6]) that such exponential queue
sizes can occur. Although computing the optimal solution of
Max-Weight is computationally NP hard for many scenarios,
in many practical wireless networks, -approximate solutions
can be computed in polynomial time [10], [12], [13]. In this
paper, we also prove the same stability of any -approximate
Max-Weight under the adversarial model, when is small
enough. We conclude the paper with a set of simulation results
showing actual stability of Max-Weight on adversarial setups.

A. Discussion

We now give a high-level description of the Max-Weight al-
gorithm and discuss why the standard stochastic analyses are in-
valid in the adversarial case. Essentially, the protocol operates
by maintaining at each node a queue of data for each pos-
sible destination . We denote the size of this queue at time
by . For any set of edges in the network, the total weight
on the edge set at time is the sum over all edges in the set
of the queue differentials multiplied by the instantaneous edge
rates. (A formal definition will be given in Section I-C.) At
all times, the MAX-WEIGHT protocol transmits data on edges
so as to maximize the total weight that it gains. In many sit-
uations, computing the exact Max-Weight set of transmissions
is a computationally hard problem. However, an -approximate
Max-Weight algorithm can be implemented efficiently in many
practical setups. In Section VI, we show the stability of any
-approximate Max-Weight algorithm, when is small
enough.
We say that we are in the stationary stochastic model if there is

an underlying stationary Markov Chain whose state determines
the channel conditions on the edges. We say that we are in the
adversarial model if we do not make such assumptions. In order
to make sure that the network is not inherently overloaded, the
adversarial model assumes that there exists some way to route
and schedule the packets so as to keep the network stable. How-
ever, these routes and schedules are a priori unknown to the
Max-Weight algorithm.
Most previous analyses of Max-Weight have been performed

in a stationary stochastic model, and they take the following
form. Define a quadratic potential function
and show, using the assumption that the traffic arrivals are
within the network stability region, that the potential function
always has a negative drift up to an additive second order term
of , where

. Moreover, when the potential function
becomes sufficiently large, the negative drift in the first-order
term is sufficient to overcome the positive second-order term.
Therefore, the entire potential function has a negative drift.
This determines an upper bound on , and
hence we have an upper bound on .
The reason that this type of analysis does not apply in the

adversarial model is that the channel rates associated with the

large queues in the network may be very small (or even zero).
In this case, we cannot necessarily say that a large queue im-
plies a large drop in the potential. Thus, for any possible queue
configuration, there is always the possibility that the potential
function can increase. Hence, we need a
different approach to ensure stability. We discuss this in more
detail in Section II.

B. Why Do Adversarial Models Make Sense?

We now briefly discuss why it is useful to consider the ad-
versarial setting that includes the worst-case scenario; A model
that is governed by a stationary stochastic process is not gen-
eral enough to cover many widely occuring scenarios. For ex-
ample, consider a cellular network in which a car is driving
down a road between evenly spaced base stations. In this case,
the channel conditions between the car and its closest base sta-
tion will rise and fall in a periodic fashion.Moreover, when a car
drives into an area of poor coverage (e.g., a tunnel), the channel
rate could go to zero. In particular, this could happen in a hap-
hazard manner that is not modeled by a stationary stochastic
process.
The situation is even more severe in ad hoc networks. As

nodes move around, many of the edges will only be ac-
tive for a finite amount of time. Hence, any stationary stochastic
model that gives a nonzero channel rate to such an edge cannot
accurately reflect the edge rate over a long time period. How-
ever, we still wish to ensure that the queue sizes will not blow
up unnecessarily over time, and we believe that an adversarial
analysis is one way to address this type of question.
In [2], the stability of Max-Weight in some adversarial model

was proven. However, it was not sufficiently rich to capture
many types of wireless interactions. First of all, in the model of
[2], all edge rates were either zero or one. Second, when an edge
had rate one, we could transmit on it regardless of what is hap-
pening on the other edges. In other words, the interference is as-
sumed to be edgewise independent. However, this model cannot
capture a situation in which edge rates are variable, nor can it
capture a scenario with two interfering edges such that we can
transmit on either one in isolation, but not both simultaneously.
In this paper, we will define a more general adversarial model

in which any interference conditions are possible and edge rates
can vary over time. This allows us to capture arbitrary types of
wireless interference behavior. We next describe our model in
more detail, after which we present our results.

C. Model

We assume a system in which time is divided into discrete
time-slots. We consider a queueing model for packet transmis-
sions. Let be the set of possible destinations. Each destina-
tion in can be a subset of the set of nodes. At each time step

, a set of feasible edge rate vectors is given
by the adversary where , and is the set of all di-
rected edges. Suppose that . It means that if we write

, then it is possible to transmit
packets on edge at rate , for all edges simultaneously. In
other words, we can transmit data of size for any des-
tination , where the sum of the amount of transmissions
on edge 1 is . Similarly, we can transmit data of size on
edge 2, data of size on edge 3, etc., so long as
for all . Note that this means that the rates satisfy the downward
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closed property, i.e., we can always transmit on an edge at a rate
that is less than the rate .
This is a very general setting for the interference model

because it includes all the possible interference constraints,
including -hop interference, independent set constraints, and
node-exclusive constraints. For example, for a dynamic net-
work or 1 for all

if and are incident in
represents a set of feasible edge rate vectors of independent set
constraints on that changes over time.
We make the following assumption about the adversary. (It

was shown in [5] that if we do not have these conditions, then
no online protocol can be stable.)
• All packet arrival and edge rates are bounded from above,
and nonzero rates are bounded away from zero. In other
words, there exist values and such
that for each

, and if , then .
We now define the -adversary, where , and .

At each time, it determines the packet arrivals and edge capac-
ities. Then, the routing and scheduling algorithm decides the
packet transfers in the network against the -adversary. In
this manner, our framework can be understood as a type of se-
quential game.
Definition 1: We say that an adversary injecting the packets

and controlling the edges is an -adversary, , for
some and some integer called a window pa-
rameter, if the following holds: The adversary defines the fea-
sible rate vectors and packet arrivals in each time step subject
to the constraint that there exists a routing and scheduling al-
gorithm (possibly involving fractional movement of packets)
that keeps the system stable. Let be the time when a packet
is injected. Then, we can define

, where is a fractional amount of that
is transmitted by along at time , which corresponds to the
movement of packet from its source to one of its destinations
under the algorithm . For all packet fraction1 of
will arrive to its destination during the window .
For any integer , let be the set of packets injected during the
window . Then, the adversary assumes
that the following holds:

where are edge rate vectors assigned by .
This is a very general adversarial model because it covers

all the possible interference conditions in dynamic networks,
including -hop interference, independent set constraints, and
node-exclusive constraints, and this model includes adversarial
models used in [1], [2], and [7]. We prove the following
theorem, which shows that the MAX-WEIGHT protocol is
throughput-optimal even against the strongest adversary.
Theorem 1: The MAX-WEIGHT protocol is stable under any

for any , and .

D. Protocol

We now define the MAX-WEIGHT protocol. We assume that
each node has queues that correspond to each destination,

1In fact, for any fraction of with constant , all the results
in this paper hold.

respectively. Thus, we have many queues. Let be the
queue at node for data having destination . Let be the
total size of data in queue at time . We define a general
routing and scheduling algorithm MAX-WEIGHT that is pa-
rameterized by a parameter . We use MAX-WEIGHT to
denote the algorithm with . In this paper, we will use
the term scheduling algorithm to mean a combined routing and
scheduling algorithm.

Algorithm MAX-WEIGHT

For each time ,

1) Choose and
for each , such that

is maximized
(with an arbitrary tiebreaking rule) where

Send data of size from to along .
2) For each node , accept all packets injected by the
Adversary to at time .

3) Remove all packets that arrive at their destination.

When implies
, so it guarantees all packet movement between

queues occur from a taller queue to a smaller queue.
The algorithm can be understood to be designed so that the

following potential function decreases as much as possible
(however, as discussed earlier and unlike in the stochastic case,
there is no simple argument that for sufficiently large queue
sizes there always is a decrease in potential):

II. STOCHASTIC ANALYSIS

In this section, we give more details of the typical stochastic
analysis and explain why this type of analysis does not directly
hold in the adversarial setting. We say that we are in the sta-
tionary stochastic model if there is an underlying stationary
Markov Chain with state space and a function
from to sets of feasible edge rate vectors such that
the Markov Chain updates its state at each time step and if it has
state at time then .
Throughout this section, we will focus on the case that

and study the potential function . Let
(resp. ) be the amount of data arriving into (resp. departing
from) at time , according to the MAX-WEIGHT algorithm.
For simplicity, we shall also discuss the most basic scenario in
which the distribution over feasible service rate vectors is i.i.d.
at each time step. By taking into account the i.i.d. nature of the
service rate vectors and the fact that the traffic injections are
within the multiplicative interior of the network sta-
bility region, we can assume that there exists some scheduling
algorithm for which the corresponding quantities and
satisfy for all .
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The expected change in from time step to time
is given by

(1)

The final inequality is due to the definition of MAX-WEIGHT
since we can think of MAX-WEIGHT as always making the
decision that minimizes . Recall that

for all . Moreover, since there is
an upper bound on the amount of data that can be transfered
between two queues at each time step, is
bounded by some quantity that is independent of time. Hence

and thus if there is some that satisfies , then
the expected drift of is negative at time . This in turn
implies that cannot grow indefinitely over time, and so the
system is stable.
We can now demonstrate why this type of argument does not

hold in the adversarial model. In a nonstationary, adversarial en-
vironment, it is not necessarily the case that the set and ex-
ogenous packet arrival rates are independent of the values.
That is, we cannot assume that a large queue will have good
connectivity to the rest of the network, so there is no analogue
of the statement that . In particular, it
may be the case that for all large and for all , the
value of is zero for all edges that are adjacent to node .
Indeed, the fact that we have built up a large queue in one re-
gion of the network may be precisely because that region has
poor connectivity to other parts of the network. Hence, we need
a different type of argument to show stability in the adversarial
setting, and this is the question that we address in this paper.

III. MAIN RESULTS

At the highest level, our proof proceeds as follows. We first
show a result that bears some similarity to the “negative drift”
result that is used to prove stability in stationary stochastic sys-
tems. In particular, in Theorem 2 we show that whenever a
packet is injected, we can assign a set of partial transmissions

by the MAX-WEIGHT protocol to the packet such that the re-
sulting decrease in potential almost matches the increase in po-
tential that arises from the packet injection itself. This allows us
to bound the increase in potential whenever a packet is injected.
(We note as an aside that when there are no packet injections, the
MAX-WEIGHT protocol ensures that the potential never in-
creases.) Moreover, Theorem 2 also shows that whenever there
is an injection to a queue that is sufficiently tall, the assigned
transmissions induce a decrease in potential more than the in-
crease due to the packet injection. Hence, for such injections,
there will always be a decrease in potential.
However, in an adversarial system, this type of argument is

not sufficient to show stability since it might be the case that
most packets are injected into small queues. We therefore ex-
tend the proof of Theorem 2 to a more general result that will
ensure stability. In particular, we introduce the notion of a bad
injection. This is an injection that is extra to the injections that
are allowed by our definition of adversary. This notion is conve-
nient since we will use an inductive proof in which injections to
small queues that lead to a big increase in potential are treated
as “extra” packets by the inductive hypothesis. In particular, we
are able to use an inductive argument to show that the number
of bad injections is bounded, and hence we can obtain an upper
bound of the potential over all time. This immediately implies
the stability of MAX-WEIGHT .
We now describe these ideas in a little more detail. The

procedure in our setup is as follows. At each time, an ad-
versary chooses the packet injections and interference condi-
tions. Then, MAX-WEIGHT determines the (routing and)
scheduling of packet transmissions. To show the stability of
MAX-WEIGHT , we will define an assignment of each in-
jected packet to a set of (partial) transmissions in the network,
so that any injected packet to a tall queue will decrease the
potential function.
Definition 2: We imagine that there are links on each

directed edge corresponding to each possible destination, re-
spectively. Let
be the set of all links. Let be a packet injected at time , and
let . Let be the vector chosen by MAX-
WEIGHT that maximizes .
For a given adversary , and a scheduling algorithm ,
we say that
is a set of (partial) transmissions assigned with if it satisfies
that for each : (i) ; and
(ii) . For convenience, we denote it by
. By the assumption on the adversary, the sets exist.
We note that the word partial is used to reflect the fact that

one transmission may correspond to multiple packets subject
to the condition (ii). Conceptually, it allows the case that an in-
jected packet can be transmitted to its destination across mul-
tiple paths. Thus, an assignment of partial transmissions of
each packet can represent many general routing patterns. More-
over, it allows the case when does not form a set of paths.
An example of this assignment is shown in Fig. 1.
Theorem 2: Consider a given adversary for any
and , and theMAX-WEIGHT protocol for some .
For all injected packets , we can assign this packet with

, MAX-WEIGHT simultaneously so that the sum
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Fig. 1. Example of partial transmission assignment. Suppose that a packet
is injected to a node at time , and its destination is . For instance,
may contain and . Note that the
assignments do not need to be at the same time, and the whole assignments do
not need to form a path or multiple paths.

of total potential changes due to is less than
, where is the height of the queue where the

packet is injected. Therefore, there is a constant depending
only on and , so that if , the sum of potential changes
due to the injection is less than .
In Section IV, we will prove the stability of theMAX-WEIGHT

protocol under any . The same argument can be applied
to prove that the MAX-WEIGHT protocol with any constant

is stable under any with .
We define a more general adversarial model, with an ad-

versary , which we call a general adversarial queue
system with bad packets. In this model, the number of queues
can be any finite number, not only of the form . Here,

allows many bad packets in the system, where the
notion of bad packet is defined below.
Recall that by Theorem 2, for our regular definition of

under MAX-WEIGHT, we can associate each injected packet
with a set of partial transmissions so that the sum of potential
changes due to these movements are at most ,
where is the height of the queue where the packet is injected
and is a constant depending only on and (but not on
and ). For the general adversarial model, there may be a

small number of injected packets for which the sum of potential
changes due to is at least . We call such
a packet a bad packet and say that all the other injected packets
are good packets.
Definition 3: We say that an adversary injecting the packets

and controlling edge capacities in a general adversarial queue
system is an adversary for some and some in-
tegers and , if the following holds: There exists a
scheduling algorithm and an assignment of partial transmis-
sions for each injected packet (for example, the collection of
for MAX-WEIGHT protocol), such that among all the packets

injected over all time, there are at most bad packets.
In the proof of MAX-WEIGHT stability, we will use an induc-

tion on the number of queues. For a given subset of queues, we
can imagine a smaller (sub)system of those queues. For an in-
jected packet , if too much of the assigned partial transmissions
do not occur between the queues of the subsystem, we will con-
sider as a bad packet. In the analysis, we will use the following
property of good packets.

Lemma 3: Consider a general adversarial queue system
with a corresponding scheduling algorithm and

a corresponding set of partial transmissions of packets . Then,
there is a constant depending on and , so that for any
good packet injected to a queue of height , if , the
sum of the decrease of potential due to is more than .

Proof: From the definition, the sum of potential changes
due to the injection of any good packet is at most

. Let , then for any

. Thus, the decrease of
potential is more than for .
The crux of our analysis will involve proving the following

theorem (in Section IV-B).
Theorem 4: Consider any general adversarial queue system

for any constant with corresponding scheduling
algorithm . If guarantees all packet movement between
queues occurs from a taller queue to a smaller queue, then
makes the system stable, i.e., keeps the queue sizes bounded.
Hence from Theorem 4, we obtain Theorem 1 directly since

MAX-WEIGHT only transmits packets from a taller queue to
a smaller one.

IV. PROOFS OF THEOREMS

A. Proof of Theorem 2

Proof: We divide time into windows of time
steps, . Since

for all integer , the col-
lection of for is nonoverlapped, and the union of this
collection covers all time-slots . From now on, let
for some integer .
For each time , and for each node , we ac-

cept all packets injected by the adversary. For each
packet , we will associate some fraction

of rates of directed edges used
in as follows. Let be all the packets injected in

; the order of ’s can be any possible ordering. From
Definition 1

(2)

where are edge rate vectors assigned by .
First, for and for each directed edge used in , we can

define for each so that

(3)

We define for each directed edge that is not
used in . Then, from (2) and Section IV-A, for each
and , let . Then, we have
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Similarly, for and for each used in , we can define
for each so that

By continuing this process, we can define induc-
tively for all , for each used in and so
that

(4)

At time , think of a link where the difference be-
tween the sizes of the queues and at time is at least
a rate of a directed edge , i.e.,

. Then, the potential change due to transmission via
a link at time is

(5)

Note that this is also true when . Hence,
when amount of edge rate of at time is assigned to
an injected packet , we conclude that

amount of potential
change is induced by a packet .
We consider the sum of potential changes at each time

by MAX-WEIGHT . Let be a vector chosen by MAX-
WEIGHT . From (5)

(6)

From (6), we obtain that

(7)

Thus, if we fix the time , then the sum of potential changes
at by MAX-WEIGHT is less than or equal to the sum of
potential changes at by . We then want to define so
that the sum of potential changes by is equal to the
sum of potential changes by .

First, we fix . Let be the packets injected
in . Let . The order of ’s can be any
possible ordering. For each , let

(8)

where is the destination of . Let

(9)

where . At first, we define

(10)

if , and otherwise. Since
is chosen by MAX-WEIGHT .

Next, let

, and
.

Similarly, for all , we can define

(11)

if , and otherwise.

Let
, and

.
Now, from (7), we can define inductively for all

, and , so that

(12)

if , and otherwise, where
, and is the destination of .
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Let , where is the destina-
tion of . for each . We obtain that

(13)

and also the following holds:

(14)

In the previous assignment, we first defined for
. From (13) and (14), MAX-WEIGHT algorithm

guarantees that the following inequalities hold:

(15)

Thus, we can assign for all , so that
. Similarly,

for all , we can assign for ,
so that .
Then, by taking the sum of the above inequalities, we derive
that strict equality holds in (14). Hence, is well defined by
the values. Thus, we assigned all packet with
so that the assigned amount of partial packet transmissions in

each link at time is less than or equal to the amount of packet
transmissions of MAX-WEIGHT in each link at time .
For since at each time-slot,

at most amount of data can move along a link from .
Hence by considering and and as constants, we obtain
that for any .
Suppose that a packet with size is injected at a node at

time . Let be the destination of . Then, the potential
change due to the injection of is

because holds for all packet
and edge .
The increase of potential due to the direct injection of is

. Hence, the total change
of potential induced by this injection of a packet is

Hence, there is a constant , depending on , and , so that
if , the sum of potential changes due to the injection is
less than .

B. Proof of Theorem 4

Proof: Let and let be some integer. Consider
a general adversarial queue system with scheduling
algorithm . Let be the number of queues in this system.
We will show that there is a constant such that for

, when the size of the tallest queue at time is
at most , the sizes of all queues over all are bounded
above by .
We induct on to show that for any and ,

there exists . For the basic step, when , there is
only one queue in the system, and thus it should be a destination
queue. Hence, exists.
For the inductive step, we assume that there is

for all , and for all and . Using this
induction hypothesis, we will show that for any
exists. We can set ,
because at each time when the bad packet arrives, the size of the
tallest queue is at most and we can transmit data of
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size at most on each link. Similarly, for any , we can
set

(16)

by considering the time when the th bad packet arrives. Now
we only need to prove that exists. Let be the
potential of the queues at time . Note that each injection to
a queue of size at most makes the potential increase by at
most . By Theorem 2, the maximum possible
increase of potential induced by all injections during any time
window of size is bounded by some constant . Now, for a
fixed , we define the following: Let . Given , for

, define

Then, , are decreasing over
. We will show that for any

for a general adversarial queue system with queues, for all
time is bounded by some value that is independent
of . More precisely, we will show that

(17)

Note that the right-hand side of (17) is independent of , so we
can conclude that exists.
Now suppose that we are given a general adversarial queue

system with queues controlled by an and some
given scheduling algorithm and a corresponding set of
partial transmissions assigned with packets, such that all the ini-
tial queue sizes are at most .
Suppose that for all time holds. Then, it

implies that the given scheduling algorithm is stable and
(17) is satisfied. Now suppose that there is such that

. By choosing the smallest such , we may assume that
since if

, the change of potential between time
and is at most . Note that if

, then there is a queue of size at least , and hence the
size of tallest queue at that time is at least .
Let be the ordered sizes of the

queues at time . For , let be the corresponding
th tallest queue at time . Then, since and

, there exists some such that
and . Hence, and the sizes of the
small queues stay much smaller than , and so the sizes of the
tall queues are much bigger than those of the small queues. We
will show that, for all the time afterward, the size of the th
tallest queue stays much smaller than . A precise description
will appear later.

Fig. 2. All the queues having size at least at time are called “tall
queues,” and all the other queues are called “small queues.” Then, tall queues
are much higher than small queues.

Now fix one such . We will say all the queues having size at
least at time are “tall queues,” and all the other queues
“small queues” (Fig. 2). Recall that by our assumption on the
MAX-WEIGHT protocol, data from a small queue will never
move to a tall queue. Hence, we can consider the set of all the
small queues as a separate general adversarial queue system.
We will call this queue system a system of small queues.
Afterward, we will use an inductive argument on this system
of small queues to guarantee that their sizes are bounded by a
constant for some during some period of time.
Let be the first time after such that there is an injection

of a packet to a tall queue or a transmission of a packet from a
tall queue to a small queue. Note that if there is no such ,
then for this , the argument that will be presented in
the proof of Lemma 5 shows that the sizes of all the small queues
cannot be bigger than for any time . Since a packet
in a small queue will never move to a tall queue, the potential
of tall queues are nonincreasing over all time. Hence, we obtain
that is bounded by

for all as
required in (17).
When there is such , our main argument is that during time

, the system of small queues is maintained. By
Lemma 3, we are able to show a net decrease in the potential
in the system, as long as there are “sufficient” injections into
queues that are large enough. Hence, one injection to a tall queue
or one transmission of a packet from a tall queue to a small
queue creates a sufficient decrease in potential.We can therefore
show that the potential remains bounded as long as the increase
in potential between times and is less than the decrease in
potential due to the injection or transmission at time . We will
prove the following lemma.
Lemma 5: There is , satisfying , such

that , and during the sizes of small
queues are bounded by .
The proof of Lemma 5 will appear later after we conclude

the proof of Theorem 4. By applying this, the potential of all
the small queues, , is bounded above
by since the sizes of all the small
queues cannot be bigger than for any time .
Note also that until the time , the potential of all the tall
queues, , is nonincreasing over time. Since
at time we know that the total potential , for
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, the potential is bounded by
. We now choose the

first time , if there exists such , so that , and
set this time as a new . Then, by applying the same argument,
we obtain that for all time , (17) holds. Hence,
exists. It implies (16), which in turn proves Theorem 4.

C. Proof of Lemma 5

To complete the proof of Theorem 4, here we give the fol-
lowing proof of Lemma 5.

Proof: Note that, for all time , there may
be some injection of packets to a small queue so that its cor-
responding set of partial transmissions includes some links be-
tween tall queues that yields the amount of potential change at
least 1. We will regard these kinds of injected packets as “bad
packets” for the system of small queues, and we will call these
injections “bad injections.” That is, each bad injection in the
system of small queues makes the potential change among tall
queues by at least 1. Note that by considering these packets as
bad packets, the dynamics of small queues can be thought as
an independent general adversarial queue system having
queues, whichmeans that it is a kind of subsystem of the original
system. Then, essentially, we will show that the total amount of
these bad injections over all time is bounded by
some number that is independent of . Note that each bad in-
jection in the system of small queues makes potential change
among tall queues at least 1.
We will derive how we can obtain the required on a

case-by-case basis. We consider the following two cases:
Case I) if there is no bad injection to small queues for all
time ;
Case II) if there are some bad injections in that time
window.

From the definition of the MAX-WEIGHT algorithm,
for each link such that , so

we send data along at least at once if we can. Without
loss of generality, we can assume that and satisfy

for each .
Case I: If there is no bad injection to small queues for all time

, then by the induction hypothesis, for all
, the sizes of small queues are bounded above by

. Thus, the potential of all the small queues at time
is at most . By Lemma 3, the decrease of
potential due to an injection to a tall queue is at least ,
and the decrease of potential due to a transmission from a tall
queue to a small queue at time is at least

. Thus,
the decrease of potential due to an injection to a tall queue or the
decrease of potential due to a transmission from a tall queue to a
small queue at time is at least

. Note that from the definition of

Therefore, the decrease of potential due to an injection to a tall
queue or a transmission from a tall queue to a small queue at
time is at least more than the potential of all the small

queues at time . Note also that the maximum possible increase
of the potential induced by injections during the time

is bounded by , and that all the packet movement
associated with the injection to a tall queue at time occurs
in this time window of size . Since there was no injection to
any of the tall queues during , the potential
of the tall queues is nonincreasing for . Hence, by
letting , we have .
Case II: Suppose that there are some bad injections to small

queues. Let be the ordered list of
. As is a

set of queue thresholds, defines a set of thresholds
for the above list of queue differences, and gives
a bound on the sizes of the small queues during some period
of time in the following cases. Note that these numbers are in-
dependent of . We can divide Case II into the following three
cases:

Case II-A) if ;
Case II-B) if there is such that for all

, and ;
Case II-C) if for all .

Case II-A: Suppose that . Then, any transmission
between two tall queues at some time will make the
decrease of potential more than . Let be the smallest time

so that there is a transmission between two tall queues
at time . By the induction hypothesis, for all time ,
the sizes of the small queues are bounded by

, and the potential of the small queues is bounded
by . Then, from the same argument as Case I,

.
Case II-B: Suppose that there is such that

for all , and . We will
show that the potential of all the small queues is bounded by

. We may assume that bad injections to small queues in-
duce transmissions just between neighboring tall queues. Note
also that the amount of bad injections to small queues during
some period of time is bounded by the total amount of trans-
missions between tall queues during that period of time.
We say a link between two neighboring

tall queues is a tall link if and a small link
otherwise.We can divide Case II-B into the following two cases:

Case II-B-1) if there is no transmission via tall links for all
time ;
Case II-B-2) if there is a transmission via some tall link for
some time .

We will use the following lemma.
Lemma 6: Let be the sizes of the small links

at time and assume that for all . If
there is no transmission via tall links for and all
the transmissions occur via small links, then the total amount of
packet transmissions via small links during that period of time
is bounded by

Proof: Let be the set of small links, where
. For , let be .

Hence, is a permutation of .
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Recall that the sizes of the queues at time are nonincreasing
with respect to their indices. Moreover, note that if
for some , then any packet that was originally located at ,
with cannot move to for all time
. Hence, we can consider each subset of consecutive small
links separately. For example, if are 2, 3, 5, 6, 7,
then we will consider 2, 3 and 5, 6, 7 separately. Suppose that

are consecutive integers. Since
, we obtain that

Thus, the amount of packet transmission via is

A similar argument holds for other consecutive indices, sepa-
rately. Hence, the sum of total amount of transmissions via small
links during time is bounded by

.
Case II-B-1: If there is no transmission via tall links for all

time , then by Lemma 6, the total amount of bad
injections to the small queues during is bounded by

. Since each bad injection in the system
of small queues makes the potential change among tall queues
by at least 1, we conclude that the number of bad packets to the
system of small queues is also at most .
Therefore, for all time , the sizes of the small queues
are bounded by

by the induction hypothesis. Hence, the potential of all the small
queues at time is at most .
Note that the potential for the tall queues is nonincreasing for

. By Lemma 3, the decrease in potential due to an
injection to a tall queue is at least , and the decrease in
potential due to a transmission from a tall queue to a small queue
at time is at least . Thus, the decrease of
potential due to an injection to a tall queue or the decrease of
potential due to a transmission from a tall queue to a small queue

at time is at least
. Note that from the definition of

Therefore, the decrease of the potential at time is at least
more than the potential of all the small queues at . By letting

, we have .
Case II-B-2: If there is a transmission via some tall link for

some time , let be the smallest such . Then,
similarly, by Lemma 6, the total amount of bad injections to the
small queues during is bounded by

. Hence, the sizes of the small queues during this time
interval are bounded by by the induction hypothesis and
from the definition of , so the potential of all the small queues
at time is at most . Moreover, during

, for any tall link is non-
decreasing and is nonincreasing because any transmission
via small links can make bigger (when is a small link),
or smaller (when is a small link), but it cannot in-
crease . Thus, at . Hence,
a transmission via a tall link at time will make the potential
decrease by at least , which is more than the potential
of all the small queues at time . Note also that the potential
for the tall queues is nonincreasing for . Hence, we
have .
Case II-C: Finally, consider the case when for

all . Then, by Lemma 6 and the induction
hypothesis, for all time , the sizes of small queues
are bounded by

Hence, the potential of all the small queues at time is at most
. By Lemma 3, the decrease of the poten-

tial due to an injection to a tall queue is at least ,
and the decrease of the potential due to a transmission from a
tall queue to a small queue at time is at least
. Thus, the decrease of the potential due to an injection to

a tall queue or the decrease of the potential due to a transmis-
sion from a tall queue to a small queue at time is at least

. Then,
from the definition of , which
is at least more than the potential of all the small queues at
time . Note also that the potential of the tall queues is nonin-
creasing for . Hence, by letting , we
have .
Hence, in all the cases, we have , and for
, the sizes of small queues are bounded by

for some , so they are bounded by .

V. CHARACTERIZATION OF THE QUEUE SIZES

We now consider the behavior of the queue sizes under the
adversarial model. In the case of a stationary stochastic net-
work, the typical “negative drift” argument that we described
earlier essentially shows that the potential in the system cannot
grow much larger than . More precisely, if
the potential ever does get larger than that amount, then some
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queue size must be larger than . At that point, the
expression for the change in network potential implies the ex-
pected drift in potential is nonpositive. One consequence of this
is that whenever an individual queue size becomes larger than

, the expected drift in potential is nonpositive.
In contrast, for the MAX-WEIGHT protocol in the adversarial

model, the bound on queue size implied by the analysis of
Section IV is actually exponential in the number of users .
We now briefly show that this is necessary. In particular, we
present an example where the MAX-WEIGHT protocol does
indeed give rise to exponentially sized queues. Our example is
close to an example given in [6] in which it was shown that we
can get exponential queue sizes in a critically loaded scenario
(i.e., where ). We now show that this is actually possible
in a subcritically loaded example (with ).
We consider a set of single-hop edges (numbered

) that are all mutually interfering, i.e., only one
edge can transmit data at a time. Let be the amount of
data injected for edge at time , and let be the edge rate.
The adversary defines these quantities in the following simple
manner. At any given time , let .
If , then the adversary sets and .
If , then it sets , and

. In both cases, all other and values
are set to 0. It is clear that these definitions are consistent with
an adversary.
Lemma 7: With the above patterns of data arrivals and edge

rates, for each and for each , there exists a such that
.

Proof: We prove the above statement by induction on .
Suppose that . Then, for this time step, is set to
0, and so . Once data have been served for edge 0
and the arriving data have been added to the edge’s queue, we
have . (Note that this assumes that data arrive
in a queue after data have been served. This is a reasonable
assumption, but if it does not hold, then we can simply set
and have all the arrivals in a window of length arrive at the
beginning of the window.) This completes the base case.
For the inductive step, suppose that for an
. The inductive hypothesis implies that there exists some

time at which . Suppose that is the first such time
step. Between and , note that we must have , and so the
value of does not change. When we reach time step , it must
be the case that . Moreover, by the definition
of the edge rates, and . Hence,
the MAX-WEIGHT protocol serves queue , but the arrivals
are for queue . Hence, is strictly greater than . By
repeating this process, we eventually reach a time at which

.
By the inductive hypothesis, there must be a time for

which for all . Between times
and , the value of cannot decrease. Hence, at time , we
have for all . The inductive step is
complete.
Corollary 8: There exists a network configuration with
edges and an adversary such that some queue grows

to size .

We remark in conclusion that with a different routing and
scheduling protocol, adversarial models do not necessarily lead
to exponentially large queues. In [6] another protocol was pre-
sented (which directly keeps track of the past history of edge
rates and arrivals) which ensures a maximum queue size of

, where is the set of feasible rate values.
However, we still believe that it is of interest to study the per-
formance and stability of the MAX-WEIGHT protocol in adver-
sarial networks since it is extremely simple to implement and it
has been proposed so many times in the literature as a solution
to the scheduling problem in wireless networks.

VI. STABILITY OF APPROXIMATE MAX-WEIGHT

As remarked in the Introduction, computing the exact
Max-Weight set of feasible transmissions is in general an
NP-hard problem. Hence, a natural question to ask is what can
be achieved if at each time step we only find an approximate
Max-Weight set of feasible transmissions. In this section, we
address this question.
Recall that assures that there is a set of fractional

movement of packets for each and there is an
edge rate vector for each , so that each edge
is used at most times the sum of rates associated at
during the time window . Thus, it guarantees that each edge
can transmit more data than is actually required by a

factor. Hence, the actual packet movement byMAX-WEIGHT in-
duces potential changes that are about times greater than
necessary.
For an optimization problem, an -approximation algorithm

is an algorithm that provides an approximate solution within
factor of the optimal solution. Although computing the

optimal solution of MAX-WEIGHT is computationally very hard,
in many practical wireless networks, an -approximate solution
can be computed in polynomial time. For example, [10] pre-
sented an -approximate solution to find the maximum weight
independent set (MWIS) on planar graphs, and this was ex-
tended by several authors to more general classes of graphs. In
[12] and [13], an -approximate MWIS for a large class of wire-
less networks in Euclidean space and polynomially growing
graphs2 [13] is provided. In our model, we assume an -approx-
imate MAX-WEIGHT computes an -approximate solution
for each time so that the potential decrease is at least
times the maximum possible potential decrease at time . We
will prove the stability of any -approximateMAX-WEIGHT pro-
tocol under any for , if .
Theorem 9: For , any -approximate

MAX-WEIGHT is stable under any .
Proof: Let , then is a since
. As in the statement of Theorem 2, if we can associate

the injection of with a set of partial transmissions
, so that the sum of potential changes due to this injection to

a queue of height is less than , then all
the other arguments in the proof of Theorem 4 hold when we
replace with .

2A sequence of graphs is said to be polynomially growing if there are con-
stants such that for all vertex and , the number of vertices
whose shortest path distance from is within is at most .
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As in the proof of Theorem 2, we define
for all , and . Then,

we show that satisfy (IV-A) if we substitute by . As
in the proof of Theorem 2, we define

(18)

By the definition of -approximate MAX-WEIGHT, we can
take for each such that

(19)

for some destinations for each . By (18) and (19), we
can recursively assign

where and is the destination of , in the same
manner as in the proof of Theorem 2. Then, for all

, and

Let for each .
We obtain that the sum of potential changes due to this injec-

tion is less than by using the same argument
as in Section IV-A. This in turn implies that -MAX-WEIGHT
algorithm is stable under .

VII. EXPERIMENTS

A. Simulation Setup

We now describe a numerical experiment that aims to under-
stand the queue size dynamics of the MAX-WEIGHT protocol
under the adversarial model. Consider an simple grid
graph , and let . Then, there are
directed edges in the graph. We assume that all single nodes
can be a destination. We let , so , and

.

Fig. 3. Underlying graphs express which edges are not available under
.

In our simulation, we used three different edge rate vectors
for . For each , we

select three edges among 17 possible undirected edges and re-
move them. The underlying graphs of are de-
scribed in Fig. 3. Other directed edges have edge rates chosen
independently and uniformly at random from [0.5, 2]. We used
the node-exclusive interference model [14], i.e., matching con-
straint model.3

Among many distinct source–destination
pairs (S-D pairs), we randomly chose many S-D pairs

for . We fix the set of feasible
edge rate vectors for all time , and we define the feasible
arrival rate as follows. The collection of all the feasible arrival
rate vectors is called the network stability region.
Definition 4: The arrival rate vector

corresponding to the S-D pairs
is said to be feasible if there exist flows, such that
the following applies.
1) For each routes a flow of at least from

to .
2) The induced net flow on the directed edges,
the interior of , where is the convex hull of .

If an arrival rate vector is in , i.e., feasible, and the ar-
rivals are identical for all time, thenMAX-WEIGHT is stable [12].
Moreover, if an arrival rate vector is not contained in , where
is the closure of , then MAX-WEIGHT is unstable. We chose
many source–destination pairs at random. For each ,
, we computed three different feasible arrival rate vectors

that are close to the boundary of the network stability region. To
do so, we fixed random arrival rate vectors such
that each entry has a value from [0.5, 2]. We computed con-
stants , by binary search, for edge rate vector , and arrival
rate vector so that is stable underMAX-WEIGHT, and

is not stable under MAX-WEIGHT, as described
in Fig. 4. Each varied from 0.098 to 0.178 in our simulation.
We used a sufficiently large time window of size so that we
could check the stability.
We did three experiments. In all three experiments, we di-

vided the time into nonoverlapped subwindows of or-
dered phases. The first phase is , the second phase
is , and for each , the th
phase is .
In the first experiment, we fixed the edge rate vector for

some . Over time, the adversary injects packets
as follows. For , if is in the th phase, then inject

3In the matching constraint model, the only way in which two edges could
interfere is by sharing a common node.
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Fig. 4. For each pair of edge rate and arrival rate vector, the plot represents the
change of the maximum size of queues for and in the
time window .

packets with an arrival rate where and
. We call the above arrival rate vector a cyclic

arrival rate vector.
In the second experiment, over time the adversary determines

edge rate vectors and packet arrivals as follows. For , if
is in the th phase, we assign an edge rate vector where

and , and we assign an arrival rate vector
where and .

We call the above rate vector a cyclic edge and arrival rate
vector.
In the third experiment, we follow the same setup of the

second experiment with an -approximate MAX-WEIGHT,
where the condition of Theorem 9 is satisfied.
Specifically, we set and . Then, we use
an -approximate MAX-WEIGHT protocol that uses the same
algorithm with the MAX-WEIGHT protocol, but sends data of
size along at each time .
Notice that, in all three experiments, the average of the arrival

rate vectors until time does not converge as goes to infinity.
Also in the second and third experiments, the same holds for the
edge rate vectors. Hence, all setups cannot be expressed by any
stationary stochastic processes. However, the above injections
satisfy the definition of for some and a small

. In all setups, we observed the dynamics of the maximum
queue sizes over time.

B. Simulation Results

For the first experiment, as Fig. 5 shows, for each edge rate
vector, MAX-WEIGHT is stable with a cyclic arrival rate vector.
Interestingly, the maximum queue size may increase in some
subwindow, but it decreases rapidly when the new subwindow
starts. This is because the congested edges are different for each
arrival rate vector, and the traffic congestions are resolved when
the arrival rate is changed. Notice that the maximum queue sizes
for the cyclic arrival case are bounded above and bounded below
by some fixed arrival rate vector cases, respectively.

Fig. 5. For the edge rate vector , we plot the maximum queue size when
we use fixed arrival rate vectors , and a cyclic arrival
rate vector.

Fig. 6. We use a cyclic edge and arrival rate in the second experiment. It shows
the stability of MAX-WEIGHT.

Fig. 7. The result shows that maximum queue sizes are bounded over time for
approximate MAX-WEIGHT protocols as stated in Theorem 9.

The queue dynamics for the second experiment are described
in Fig. 6. The gray lines describe queue sizes for nine possible
fixed edge and arrival rate vectors. The black line describes the
queue size for the cyclic edge and arrival rate vector case. Again,
the maximum queue sizes for this case are bounded above and
bounded below by some fixed edge and arrival rate vector cases,
respectively. From our two experiments, we observe that MAX-
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WEIGHT makes the system stable under even when the
edge and arrival rate vectors do not converge over time.
In the third experiment, the queue dynamics are described in

Fig. 7. The gray lines describe queue sizes for three pairs of fixed
edge and arrival rate vectors among nine possible pairs. The re-
sult verifies that the stability results of the MAX-WEIGHT pro-
tocol can be extended to approximate MAX-WEIGHT as stated in
Theorem 9.

VIII. CONCLUSION

In this paper, we have shown that the MAX-WEIGHT protocol
remains stable even when the traffic arrivals and edge rates are
determined in an adversarial manner.
In our opinion, the most natural open question concerns the

bound on queue size. Our analysis gives a bound that is expo-
nential in the network size, and we have shown in Section V
that such a bound is unavoidable in the general case. However,
achieving these large queue sizes involves choosing the achiev-
able edge rate vectors in a very specific manner. We are
interested in whether there are any simple sufficient conditions
on the sets , which would ensure that such large queues do
not occur.
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