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Abstract

While measuring inequality of a social system has 
been a popular topic in economics and sociology, structural 
fairness and inequality of social networks has not been 
paid attention by researchers interested in web or social 
network analysis. In practice, measuring structural fairness 
and inequality has a number of applications in online social 
networks, for example, we can check skewness of degree 
distribution by simply seeing inequality index. The power-
law exponent has often been used to measure the inequality 
of network structures, however, it has several drawbacks to 
be applied to universal networks.

In this paper, we propose a novel framework to measure 
fairness and inequality of a given network in the context 
of its structure. We develop a set of centrality fairness 
measures by combining other well-known node centralities 
with Gini index. We also analyze scale-free property of our 
proposed centrality fairness measures in real networks.

Moreover, we suggest simple and efficient methods to 
relax structural inequality of a network, which are based 
on two edge manipulations: addition and rotation. Through 
experiments on real networks, we show that our methods 
decrease inequality quite steadily and effectively, and as 
structural hierarchy of a network gets stronger, decreasing 
rate of inequality gets lower.

Keywords: Centrality fairness, Structural inequality, Node 
centrality, Gini index, Social network.

1 Introduction

In economics and sociology, inequality of a real world 
system has been studied with respect to various dimensions 
such as income [1], education [2], and opportunity [3]. 
With the recent growth of web and mobile contents such as 
blogs and social network services, online social networks 
have been spotlighted as one of rich information sources 
reflecting the real world social system. However, despite 
a number of studies on measuring a network characteristic 
such as clustering coefficient and modularity, it has been 
hardly done in terms of structural inequality even though 

“structural” and “inequality” easily come up with word 
“network” and “ocial,” respectively.

In traditional inequality researches, a system is viewed 
as collection of individuals without considering relation or 
interaction between them. For such a reason, it has not been 
particularly relevant to measuring how structurally unequal 
the system is. Thus, existing measures cannot be directly 
applied to measuring structural inequality of a network. 

In a real world network system, measuring fairness and 
inequality in terms of its structure can provide an idea in 
characterizing a network or controlling its growth to keep 
the network somewhat structurally equal. For example, in a 
social network service like Twitter, considering inequality 
of indegree and/or outdegree may enable us to know 
that vitalization of the system highly depends on a small 
number of power users, and try to develop contents actively 
consumed within passive users. Another example is a peer-
to-peer (P2P) network. In this case, a developer or manager 
would like the network to grow or shrink while keeping 
somewhat high equality in betweenness or closeness for 
efficient transmission. In fact, even without measuring 
inequality, one can handle the cases above in some way. 
However, by summarizing the extent of inequality, we 
can characterize a structural state of a network by some 
simple indices, which can be of use to prevent/help that the 
network changes to an undesirable/desirable structure.

In general, the power-law exponent has been used 
to measure the fairness of social networks and complex 
network systems. However, due to several weaknesses 
of this approach, the power-law exponent has significant 
limitations as a fairness measure, particularly narrow 
applicability [4]. Many real-world networks do not follow a 
power law and it is not valid to use power-law analysis for 
these networks. For example, some network structures like 
ad hoc network are best captured by a random geometric 
graphs which have Poisson degree distributions, thus do not 
exhibit scale-free properties. Also, the power-law exponent 
suffers from high computational complexity and the power-
law paradox i.e., the power-law exponent does not precisely 
quantify the extent of inequality/unfairness of the degree 
distribution. As alternatives, there have been proposed 
several measures based on the Lorenz curve, which is 
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 y We analyze scale-free property of our proposed structural 
inequality measures in real networks. By measuring 
correlation of inequalities between the whole network 
and sampled subset, we verify the scale-free property in 
our proposed measures.
 y We suggest network manipulation methods for relaxing 
structural inequality based on two elementary operations: 
edge addition and rotation. Through experiments, we 
show that both methods reduce inequality steadily on 
average over the amount of manipulations, and decreasing 
rate of inequality is negatively correlated with strength of 
structural hierarchy of a network. 

1.2 Related Work
There are a large number of studies, especially in 

economics and sociology, measuring inequality between 
individuals in various dimensions, such as income. The 
key issue in these studies is how to summarize a given 
distribution of individuals’ wealth by a single measure to 
indicate the extent of inequality [5-6].

The framework popularly used is Lorenz curve, which 
is a kind of normalized cumulative distributions and 
becomes the y = x line for a perfectly equal distribution. Of 
measures based on Lorenz curve, the most commonly used 
one is Gini index [7]. This is defined as the area between 
the perfectly equal line and Lorenz curve, which becomes 
large when a small group possesses a disproportionately 
large portion of the total.

Based on Lorenz curve, some network fairness 
measures are proposed in [4] to analyze the structure of 
the Web, resolving the weaknesses of power-law exponent. 
However, this work only focuses on measuring unfairness 
of the degree distribution. The paper quantifies the fairness 
of degree distribution, one of the known node centralities, 
using Gini index but it lacks measures for the fairness of 
other node centralities such as pagerank, closeness and 
betweenness. 

Within the social network literature, the “centralization” 
proposed by [8] is one of structural inequality measures. 
Given a centrality such as betweenness, it measures 
difference between the most central node of a given 
network and that of the worst case network (i.e., with the 
theoretically largest such sum of differences) with the same 
number of nodes [9]. For our purpose here, these works 
lack consideration of the whole distribution, and more 
importantly, finding the worst case network is problematic 
in working with various node importance measures.

A recent study also analyzed structural features of 
networks to propose a learning model for mining influential 
communities [10]. In another recent study, structural 
analysis is applied to describe a certain real-world network. 
[11] characterizes the structural features of the Twitter 

widely used in economics. The recent paper shows that 
the Gini coefficient of a degree distribution does not suffer 
under the drawbacks of the power-law exponent [4].

In this paper, we first propose a framework for 
measuring fairness of a network of other structural 
components of a network besides degree distribution. 
In our framework, structural wealth of individuals is 
quantified by a node centrality such as pagerank, closeness 
and betweenness and then the wealth distribution is 
summarized as one value by Gini index. Combining 
known node centralities and Gini index, we develop a set 
of measures called centrality fairness, each of which we 
examine its meaning in terms of information spreading. 
Also our measures can be considered as a kind of network 
characteristic measures such as the exponent of a power-
law degree distribution or clustering coefficient.

Next, we analyze the scale-free property of our 
proposed structural inequality measures in real networks. 
A network is said to have a scale-free property when 
the characteristic of whole network also holds in a part 
of the network. A scale-free property is essential for the 
inequality measure in that we can infer the whole network 
structure by only seeing a small part. Thus, we measure 
correlation of inequalities between the whole network and 
sampled subset. Especially we focus on nodes having high 
centralities (rich group) as the subset. This rich group does 
not show exactly scale-free property, but we observe that 
centrality fairness is positively correlated with that of the 
whole network.

Lastly, we suggest methods to relax structural 
inequality of a network and verify the results using 
centrality fairness. Especially we focus on a process 
manipulating relation of individuals, i.e., edges, and apply 
two types of manipulations: edge addition (making new 
relation) and edge rotation (changing existing relation). 
Through experiments, both methods reduce inequality 
steadily on average over the amount of manipulations, 
and the rotation shows more stable performance. We also 
observe that decreasing rate of inequality shows negative 
correlation with strength of structural hierarchy of a 
network. Thus, we analyze the structural characteristics that 
enable each method to greatly reduce inequality even with 
quite small manipulations. 

1.1 Our Contribution
We summarize our contributions as follows.

 y We devise a new framework to measure structural fairness 
and inequality of a network. Especially, our proposed 
measures can cover the non-power law networks. Our 
method essentially combines node centralities and Gini 
index, each of which has its own meaning depending on 
the used centrality.
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follow graph in terms of graph properties such as degree 
distributions, clustering coefficients, and shortest-path 
lengths. 

2 Setting and Preliminaries

In this section, we describe the network datasets used 
in our analysis, and explain a node centrality and Gini 
index.

2.1 Data Description
We use nine directed networks, including online social 

networks, blogs, web links, trust networks, and voting. All 
the networks below are manipulated so that isolated nodes 
and duplicated edges are removed.

 y advogato [12]: A trust network of Advogato, SNS for 
open source developers. Trust is represented by one of 
values {0.4,0.6,0.8,1.0}, and we excluded edges with 0.4 
which stands for a less-than-sufficient level in the original 
paper. 
 y anybeat [13]: A follower/followee network(as Twitter) 
of a social network named Anybeat. The following 
relationships are represented by directed edges.
 y google [14]: A hyperlink network of Googles own 
webpages. International pages and nodes farther than 3 
steps from the start node are excluded.
 y polblogs [15]: A hyperlink network of weblogs among 
political-oriented blogs during the 2004 U.S. Presidential 
campaign. A link is constructed if a URL present on the 
page of one blog references another political blog.
 y slashdot-re [16]: A reply network of Slashdot which is 
a technology-related news website. An edge is from a 
replier to an author of a post.
 y epinions [17]: A trust network of Epinions in which edges 
are labeled by trust or distrust. We used only trust edges 
whose proportion over the total is 0.85.

 y slashdot [17]: A trust network of Slashdot in which edges 
are labeled by friend or foe. We used only friend edges 
whose proportion over the total is 0.77.
 y wiki-vote [18]: A wikipedia voting network for promoting 
to an administrator in which edges are labeled by 
positive or negative. We used only positive edges whose 
proportion over the total is 0.79.
 y facebook [19]: A collection of wall posts from the 
Facebook New Orlean networks. A posting from a users 
friends is treated as a form of user interaction.

2.2 Node Centrality 
Node centralities have been studied in social network 

analysis to rank nodes with respect to a certain importance 
criterion. For instance, the indegree and outdegree centrality 
measures how popular and active each node is in a network, 
respectively; the pagerank measures how many influential 
nodes a node is linked from; the betweenness centrality 
measures how often a node is used in connecting other 
node pairs with a shortest path; the closeness centrality 
measures how fast, in terms of the number of hops, a node 
can reach all nodes in a network; Below, we present formal 
definitions of these centralities. In this paper, we use the 
notations G = (V, E) with n = |V| and m = |E| for a network, 
and din(u) and dout(u) for indegree and outdegree of a node u 
∈ V, respectively. 

 y Degree: size of indegree (although we focus on indegree, 
it can be applied to outdegree).

 Cdeg(u) = din(u). (1)

 y Betweenness: the extent that each node is placed on 
shortest paths between other nodes. 

 Cbtw (u) = Σ
v, w ∈ V \ {u}

| σ vw(u) |
| σ vw |

, (2)

Table 1 Statistics of Our Datasets

Name |V| |E| λ α in α out α all ρ Δ κ ω

advogato 5,170 47,334 91.16 1.46 1.49 1.57 0.09   9.00 0.98 0.00
anybeat 12,645 67,053   5.30 1.61 1.70 1.90 0.02 10.00 1.00 0.00
google 15,763 170,335 10.81 1.48 1.38 1.48 0.01   7.00 1.00 0.00
polblogs 1,224 19,022 15.54 1.42 1.34 1.40 0.23   8.00 1.00 0.00
slashdot-re 51,083 130,370   2.55 1.99 1.70 2.34 0.01 17.00 1.00 0.07
ephinions 114,222 717,129   6.28 1.76 1.68 2.04 0.09 14.00 0.88 0.00
slashdot 75,144 425,072   5.66 1.62 1.72 1.85 0.03 14.00 0.99 0.00
wiki-vote 6,262 81,820 13.07 1.66 1.47 1.58 0.13   8.00 0.99 0.00
facebook 45,813 264,004   5.76 1.50 1.52 1.64 0.09 18.00 0.96 2.24

Note. In the first row, l stands for density i.e., |E| = |V|; α in , α out and α all for exponents of the power law curve for indegree, outdegree, and both, respectively; ρ for 
clustering coefficient; Δ for diameter; κ  for size of maximal connected component; ω for ratio of multiple edges.
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where σ vw is a set of shortest paths from v to w, and σ vw(u) 
= {(s1, ..., sk) ∈ σ vw: ∃i, si = u}.
 y Closeness: the average shortest path length from a node 
to the other nodes. 

 Ccls(u) = Σ v ∈ V 2–d(u, v), (3)

where d(u, v) is the shortest path length from u to v (we 
use the definition from [20] for a weakly connected 
network).
 y Pagerank: higher scores as pageranks of in-neighbors gets 
higher.

 Cpgr (u) = 0.15 + 0.85 Σ
(v, w) ∈ R

Cpgr (v)
dout (v)

, (4)

where we use 0.85 as the damping factor.

2.3 Gini Index
Gini index is one of the most popular inequality 

measures which has been applied in various fields, 
including sociology [21], economics [3], and ecology [22]. 
The defi nition of Gini index is as follows.
Defi nition 1 (Gini index). Given a vector X ∈ n, let Y be 
a sorted vector of X in increasing order. Then, the Lorenz 
curve L: [0, 1] → [0, 1] is defined as a piecewise linear 
function connecting (x(k), l(k)), 0 ≤ k ≤ n where

 x(k) = 
k
n , l(k) = 

Σ i = 1
k

 Yk

Σ i = 1
n

 Yi

. (5)

Then Gini index is defi ned as

 Γ (X) = 1 – 2∫
1

0
L(x)dx. (6)

Figure 1(a) depicts relation of Lorenz curve and 
Gini index. Note that for the perfectly equal case, i.e., all 
elements in X are identical, its Lorenz curve is the y = x 
line, and for the case of only one nonzero element in X with 
n → ∞, the curve goes to the y = 0 line. Thus, note that a 
Lorenz curve is always below the perfectly equal line.

One might be confused between fairness and small 
variance of wealth. We notice that a small Gini index 
does not mean that wealth of people has small variance 
(concentrated to the mean). Rather, it means that a large 
portion of the total wealth is shared by a majority of 
the total population. For example, we can consider two 
societies having wealth distributions of the same variance 
but very different Gini index, as follows. In one society, a 
majority is rich and the few is extremely poor; in the other 
society, a majority is poor and the few is extremely rich. 

Corresponding Lorenz curves for both societies are depicted 
in Figure 1(b). Note that despite the same variance, there 
is a very large gap in terms of inequality between two 
societies.

(a) (b)

Figure 1 Examples of Lorenz Curve
Note. (a) The shaded area is the half of Gini index. (b) The red dash curve -- ex-

tremely equal -- corresponds to the society where only few people is very 
poor, and the blue dot curve -- extremely unequal -- corresponds to the 
society where only few people is very rich. Both societies have the same 
variance, but completely different Gini index.

3 Centrality Fairness Measure

In this section, we propose a framework to measure 
structural fairness and inequality of a network. Our 
framework combines a node centrality and Gini index, 
that is, it uses a centrality as individuals’ structural wealth 
and Gini index to summarize it. One advantage of using 
Gini index is that it satisfi es several properties required to 
be a good fairness measure such as mean independence, 
population independence, transfer principle and symmetry 
[23]. Also it has no parameter, which provides simplicity 
beneficial when working with a new topic and helps to 
concentrate on the problem itself. 

The exponent of power-law degree (or other centrality) 
distribution, familiar in the literature, might be considered 
for a summarization method. In this case, as the value 
gets larger, a network gets more equal. However, it can be 
only used when a wealth distribution follows power-law, 
preventing to apply with general node centrality measures. 
Also it cannot distinguish the cases of the same exponent 
but different size of a support set as in Figure 2. Obviously 
the second case is more unequal than the fi rst one.

Combining the node centralities in the previous section 
with Gini index, we develop four different centrality 
fairness measures for a network, and we will denote each 
measure by concatenating a node centrality name and Gini, 
e.g., pagerank-Gini. Then, those enable us to examine 
structural inequality of a network from various angles. 
Below, we present meanings of our measures in terms of 
information spreading/transmission.

 y Degree-Gini: Degree centrality can be considered 
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to measure how much information a node directly 
receives, that is, from its direct neighbors. If we consider 
information attenuated per transmission such as rumor, 
degree-Gini represents inequality on the ability to receive 
credible information.
 y Betweenness-Gini: In information transmission view, 
betweenness of a node can be interpreted as likelihood of 
the node being a bottleneck. Then, betweenness-Gini can 
be an indicator for how many and strong bottlenecks are 
in a network. In this case, a large value implies existence 
of few but strong bottlenecks in a network. On the other 
hand, large betweenness-Gini also means that a large 
number of shortcuts are spanned by a small number 
of nodes. Hence, betweenness-Gini can be used as an 
indicator for how robust a network is to node removal 
attacks in terms of effi cient transmission. 
 y Closeness-Gini: Closeness measures the ability of a node 
to spread information within a small number of hops to 
the whole network when the information is originated at 
that node. Then, large closeness-Gini indicates that there 
are few effective nodes and many ineffective nodes as the 
origin of spreading information. 
 y Pagerank-Gini: Considering that pagerank is defined 
as the stationary distribution of a transition matrix, 
pagerank measures the amount of information reaching 
the node through the corresponding random walk. Hence, 
pagerank-Gini can be interpreted as inequality on the 
ability to receive information.

Through experiments on our datasets, we observed that 
in general, betweenness-Gini is very high (at least 0.8), and 
closeness-Gini was quite low (at most 0.5). The former is 
because a range of the betweenness centrality is from 0 to 
n2, which can make a rich-poor gap large, and also because 
of existence of nodes having very large betweenness: hubs 
and bridges. The latter is from a property of the closeness 
centrality. First let us consider an undirected network, and 
assume that a node with the highest closeness can reach all 
the other nodes within O(logn) hops. Then, it means that 
every node can reach all the other nodes within O(logn) 
hops. In other words, a node with high closeness itself has a 

positive effect to other nodes in reachability. This argument 
can be applied to directed networks, and thus closeness-
Gini appears somewhat low.

We also examined correlations between our fairness 
measures. As expected, degree-Gini, pagerank-Gini, and 
betweenness-Gini are somewhat positively correlated 
each other (about 0.5 ~ 0.8). In contrast, closeness-Gini 
is weakly correlated with degree-Gini and pagerank-Gini 
(less than 0.2). Moreover, it shows negative correlation 
with betweenness-Gini (about -0.55). These moderate 
correlations, especially between closeness-Gini and the 
others, indicate that each measure captures structural 
inequality of a network in a distinct dimension.
Test of Scale-Free Property

In general, a network is said to have a scale-free 
property when the characteristic of whole network also 
holds in a part of the network. We analyze scale-free 
property of our proposed centrality measures in real 
networks by examining whether inequality of the whole 
network is also observed in its subset consisting of rich 
nodes in the centrality. (scale-free property) To that end, we 
construct a reduced network consisting of a proportion of 
richest nodes in the centrality, and compare its inequality 
with that of the whole network.

In Figure 3, correlations of our inequality measures 
between the whole networks and reduced networks 
consisting of top 10% nodes in specified centralities are 
shown. In the figure, correlation forming the y = x line 
implies that the scale free property holds. 

Figure 3 Correlations of Inequality between the Original 
Networks and Reduced Networks

Note. These graphs show correlations of inequality between the original net-
works and reduced networks by top 10% nodes in the specifi ed centrali-
ties. x-axis is the original inequality and y-axis is inequality in the re-
duced networks. The nine points for each color are our network datasets.

(a) Existence of the middle class (b) No middle class

Figure 2 The Same Power Law Distribution with Different 
Support Sets
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We observed for all cases that correlations are quite 
large for degree-Gini, pagerank-Gini and betweenness-Gini, 
but not that clear for closeness-Gini. Another observation 
is that inequalities of the reduced networks are larger than 
that of the whole networks -- correlation slope larger than 1. 
This makes sense because rich nodes generally have large 
in- or outdegree and thus such a reduced network becomes 
denser than the original.

4 Methods to Relax Structural 
Inequalityg

We have proposed structural fairness and inequality 
measures for a network. In many real problems, we would 
like to design and manage a network to have more fair and 
equal structure. In this section, we propose methods to 
relax structural inequality of a given network and analyze 
them. Our methods are random processes that gradually 
manipulate edges of a network to make it have a smaller 
pagerank-Gini. Although we especially focus on pagerank-
Gini in this section, our analysis can be naturally applied to 
our other centrality fairness measures.

Our methods use two types of network manipulations: 
edge addition and edge rotation. Even though the rotation 
may be less applicable to real world systems than the 
addition, it can be of help in designing a network, managing 
its growth, or understanding a basis of relaxing inequality.

4.1 Edge Addition
Naturally, we can expect that a network gets more 

equal in pagerank-Gini as more edges are added because 
a pagerank distribution tends to be uniform as a network 
gets denser. For addition, we consider a random process 
determined by two probability distributions over nodes for 
choosing head and tail nodes of a new edge. Below, we 
present several methods.

The first method is to choose tail and head nodes 
uniformly at random, and connect them. This is used as a 
baseline to see how effectively other additions perform. We 
call this method rAdd. Considering pagerank of one node 
distributed over its neighbors along links, we can design a 
more efficient method. The key idea is to add an edge from 
a rich node to a poor one. We suggest two methods for each 
of choosing a tail node (rich) and head node (poor).

For a tail node, the first one is to simply pick a node 
with probability proportional to its pagerank. The second is 
to pick a node with probability proportional to the pagerank 
divided by its outdegree, which focuses on influence of a 
node spread to its each out-neighbor rather than an absolute 
pagerank value. We denote these two methods by RichTail 
and InfluTail, respectively.

For a head node, the first method is to pick a node 

with probability proportional to inverse of its pagerank, 
and the second one is to pick a node with probability 
proportional to inverse of summation of pagerank of the 
node and discounted pageranks of its out-neighbors, i.e., 

1
Cpgr (u) + 0.85Σ v ∈ Nout(u)Cpgr (v)/d_out (u)

. We denote these 

by PoorHead and PoorArea, respectively.

4.2 Effect of Edge Addition
Figure 4(a) shows changes of pagerank-Gini as the 

number of added edges gets larger. As expected, pagerank-
Gini decreases as edges are added more, but for some 
networks, especially slashdot and wiki-vote, it increases 
with rAdd until |V| number of edges are added. One may 
think it depends on initial pagerank-Gini or density. But, 
in our experiments, facebook and advogato, having almost 
same initial pagerank-Gini to slashdot and wiki-vote, 
do not show a similar pattern. Rather, we guessed that 
it is more likely due to a hierarchical characteristic of a 
network. We use the definition by [24] for a hierarchical 
structure h* where as h*(u) gets larger, u ∈ V is considered 
to be on a higher level in the hierarchy. Details on h* are 
provided in Appendix. Defining back-edges as {(u, v) ∈ 
E: h*(u) – h* (v) > 0}, note that as back-edges gets smaller, 
structural hierarchy of a network gets stronger. In Figure 
5(a), correlations of pagerank-Gini after rAdd with density 
and ratio of back-edges are shown. Note that decrease 
ratio of pagerank-Gini is highly correlated with ratio of 
back-edges, i.e., negatively with strength of hierarchy, 
and its correlation is clearer than that with the density of a 
network.

Another notable point in Figure 4(a) is that for google, 
RichTail ⊕ PoorArea and InfluTail ⊕ PoorArea rapidly 
decrease the pagerank-Gini even with a small number of 
additions compared with the other additions. One reason 
is that in google, a large portion of poor nodes in pagerank 
have out-neighbors such that the sum of their pageranks 
is large as in Figure 6. This means that when we choose 
a head node for addition using inverse of an absolute 
pagerank, flow along the new edge spread to a small 
number of rich nodes or a large number of poor nodes. The 
former case does not help poor nodes get richer, and the 
latter case helps it quite insignificantly.

Overall, RichTail ⊕  PoorArea and InfluTail ⊕ 
PoorArea are better for a small number of manipulations, 
but as the amount of manipulations gets larger, RichTail ⊕ 
PoorHead and InfluTail ⊕ PoorHead decrease inequality 
better in general.

4.3 Edge Rotation
We define the rotation of an edge as changing its 

head node with keeping the same tail node. In contrast to 
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addition, it does not change the density of a network, and 
thus we cannot expect the natural effect by getting denser 
as in the addition. Rather, our rotation is motivated from 
the fact that a pagerank distribution of real networks obeys 
power-law, and can be understood as a reverse operation of 
the preferential attachment.

We propose one base line and two methods for each 
of choosing a rotated edge and a new head node. First, 
as a baseline, we consider to choose a rotated edge and a 
new head node uniformly at random. Second, for a rotated 
edge, one is to pick an edge with probability proportional 
to sum of pageranks of its two end nodes, and the other is 
to pick it with probability proportional to pagerank of its 

head node. We denote these two methods by RichEdge and 
RichHeadEdge, respectively. The methods for choosing a 
new head node are the same as those used in the addition.

Figure 6 Histograms Showing Distributions of Pagerank Values 
and Summation of Pageranks of Out-Neighbors

(a) rAdd (b) rRotate

Figure 5 Correlation of Decrease of Pagerank-Gini with Density 
and Back-Edges

Note. Correlation of decrease of pagerank-Gini with density is provided in red 
and back-edges in blue. For each graph, x-axis represents ratio of pager-
ank-Gini after the specifi ed method over the initial value.

(a) Addition

(b) Rotation

Figure 4 Changes in Normalized Pagerank-Gini in Relation to Changes in Edges
Note. Graphs showing how the addition and rotation methods relax the pagerank-Gini of our selected networks. For each graph, x-axis is the number of added or 

rotated edges and y-axis is normalized pagerank-Gini by the initial value (data) where n = |V|. Although only selected networks are presented here due to the 
space limit, the other networks showed similar patterns to the average of each case.
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4.4 Effect of Edge Rotation
Figure 4(b) shows changes of pagerank-Gini as the 

number of rotated edges gets larger. In contrast to the 
addition cases, every method monotonically and constantly 
decreases the pagerank-Gini. Note that for google the value 
signifi cantly decreases by RichEdge ⊕ PoorArea as in the 
addition cases, but not with RichHeadEdge ⊕ PoorArea. 
This is due to the fact that in google, there are many 
edges from very poor nodes to very rich nodes compared 
with other networks. Figure 7 shows that for many edges 
(u, v) of google having high probability in RichHeadEdge, 
i.e., having large Cpgr(v), Cpgr(v) – Cpgr(u) is large 
compared with other networks. This can be regarded 
as a characteristic of internal networks with centralized 
management compared with those growing in fully 
decentralized mechanism.

Figure 7 Differences of Pageranks between Head and Tail Nodes 
of Edges Having High Probability in RichHeadEdge

Note. For each network, top 10% edges are used. The black box plot represents 
minimum, lower quartile, median, upper quartile, and maximum while 
excluding outliers outside interquartile range times 1.5 from the box; red 
bar plot represents mean and variance.

Figure 5(b) shows that performance of rRotate is 
somewhat correlated with not only the number of backedges 
(described in Effect of Edge Addition) as in rAdd but also 
the density of a network. However, note that rRotate never 
increases pagerank-Gini even with few rotations, and in 
fact, this is the same for all the other rotation methods. 
As a consequence, a rotation is more robust to a network 
structure when relaxing inequality of pagerank-Gini.

5 Conclusion

This paper has proposed a framework for measuring 

structural fairness and inequality of a network with a 
set of measures, analyzed the property of our measures, 
and developed methods to relax the inequality of a given 
network. We examined the meanings of our measures in 
terms of information transmission and the correlations 
between our fairness measures. Also we observed that 
fairness of the whole network is similar to the fairness of 
its subset consisting of rich nodes in the centrality. Our 
inequality relaxation methods were shown to relax the 
inequality quite steadily and effectively. We also showed 
that difficulty of relaxing the inequality is positively and 
highly correlated with hierarchical strength of a network.

We believe that this paper presents novel measures 
for network analysis, and can be considered as a starting 
point for further research on measuring structural fairness 
and inequality of a network. Especially, we expect that 
methods to relax (or possibly intensify) inequality has 
many applications in designing and managing a network 
and would be one of topics receiving attention in inequality 
studies of a network. Also, reconstruction of inequality in 
real world by developing a network generation model with 
our measures might be addressed in future research.
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Appendix

Here, we introduce a notion of hierarchy of a network 
proposed by [24]. They consider a directed acyclic graph 
(DAG) as a perfect hierarchical structure, and design a 
measure to see how strong hierarchy a given network has. 
Concretely, they defi ne hierarchy of a network G = (V, E) 
as follows (the original defi nition of hierarchy in their paper 

is H' (G) = 1 – H(G)
|E| ).

 H(G) = min
h∈^|V| � Σ

(u, v) ∈ G
min
o

(hu – hv + 1,0)�. (7)

They show an integer programming formulation of H, 
and propose a combinatorial algorithm to exactly minimize 
H. Note that for a given network G, as H(G) gets smaller, 
G gets topologically closer to a directed acyclic graph. We 
call h* ∈ |V|  corresponding to H(G) a hierarchical structure 
of a network G.
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