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Abstract— Distributed computation of average is essen-
tial for many tasks such as estimation, eigenvalue com-
putation, scheduling in the context of wireless sensor and
ad-hoc networks. The wireless communication imposes the
gossip constraint: each node can communicate with at most
one other node at a given time. Recent interest in emerging
wireless sensor network has led to exciting developments
in the context of gossip algorithms for averaging. Most of
the known algorithms are iterative and based on certain
reversible random walk on the network graph. Subse-
quently, the running time of algorithm is affected by the
diffusive nature of reversible random walk. For example,
they take Ω(n2) time to compute average on a simple path
or ring graph of n nodes. In contrast, an optimal (simple)
centralized algorithm takes Θ(n) time to compute average
in a path. This raises the following questions: is it possible
for a distributed algorithm to compute average in O(n)
time for path graph? is it possible to improve over diffusive
behavior of current algorithms in arbitrary graphs?

In this paper, we answer the above questions in affir-
mative. To overcome the diffusive nature of algorithms, we
utilize non-reversible random walks. Specifically, we design
our algorithms by ”projecting down” the ”lifted” non-
reversible random walks of Diaconis-Holmes-Neal (2000)
and Chen-Lovasz-Pak (1999). The running time of our
algorithm is square-root of the time taken by correspond-
ing reversible random walk for a large class of graphs
including path. As a sub-routine, our algorithm uses a
simple distributed maximal matching algorithm that runs
in O(log2 n) time for arbitrary graph, which may be of
separate interest.

I. INTRODUCTION

With the development of peer-to-peer, sensor, and
wireless ad hoc networks, there has been a lot of recent
interest in totally distributed algorithms for fault-tolerant
computation. This is primarily due to dynamic nature of
network, lack of infrastructure and limited computation
and communication resources. The wireless communi-
cation imposes constraints on simultaneous exchanges.
Motivated by popular interference model, we consider
algorithms with the gossip constraints: (a) each node
communicates with at most one other node at a given
time, (b) nodes lack unique identity and (c) nodes can
utilize only local information for computation. Thus,
gossip algorithms are totally distributed. We will con-
sider gossip algorithms for the question of computing
average in a network. Distribution computation of an

average is essential to many distributed tasks such as
estimation, eigenvalue computation for clustering, etc.
[9] and scheduling [10].

A. Setup
We are given an arbitrary connected network. Let its

graph be G = (V,E) with |V | = n nodes. Initially,
each node i ∈ V begins with its value xi ∈ R+. If
(i, j) ∈ E then nodes i and j can exchange messages.
Time, denoted by t ∈ Z+, is assumed to be slotted
and in a time-slot two nodes can transmit a number
to each other. Let x(t) = [xi(t)]T be column-vector
of values at n nodes at time t, with x(0) = [xi]T
under some algorithm A. The goal is to compute the
average xave = x(0)T 1/n =

∑n
i=1 xi/n = ‖x(0)‖1/n,

at all nodes. We wish to design algorithm so as to
minimize the computation time. Specifically, we define
ε-averaging time TAave(ε) of an algorithm A as follows:
let S = {x(0) ∈ Rn

+ : ‖x(0)‖1 = 1}, then

TAave(ε) = sup
S

inf{t ∈ Z+ : Pr (‖x(s)− xave1‖1 > ε) < ε,

∀s ≥ t}.

where Pr(·) denotes the probability induced by random-
ization of algorithm A. Note that xave = 1/n for x ∈ S.
Naturally, the above definition applies for deterministic
algorithms as well. We remind ourselves that interest is
in gossip algorithms, in which simultaneous transmis-
sions in a time-slot form a matching in the network
graph.

B. Previous Results
The question of averaging has recently received a

lot of attention. One of the earlier work on distributed
averaging was by Tsitsiklis [13]. In that and follow-on
work, many considered iterative algorithms where a node
was allowed to exchange information with possibly all
of its neighbor. Essentially, the x(t) evolved according
to a linear-dynamics, where x(t + 1) = Px(t), with
P1 = 1 and P is graph conformant, i.e. Pij 6= 0 only
if (i, j) ∈ E. Let λ2(P ) denote the norm of second
largest eigenvalue of P . Then, it is well-known that
the ε-averaging time is of order s(P )−1 log ε−1, where
s(P ) = 1 − λ2(P ). In addition, if P ≥ [0] and be a
probability transition matrix, then the ε-averaging time
becomes the same as ε-mixing time, TP

mix(ε) of P defined
as follows: let Pπ = π, then

T P
mix(ε) = sup

S
inf{t ∈ Z+ : ‖x(s)− π‖1 < ε, ∀s ≥ t}.



This previous work required each node to communicate
with multiple nodes in a given time-slot and hence
violating gossip constraints. The natural question was:
is it possible to achieve ε-averaging time same as ε-
mixing time under gossip constrained communications?
Karp, Schindelhauer, Shenker and Vocking [6] showed
that answer is negative by establishing that ε-averaging
time Ω(log n) for small enough but constant ε > 0,
while P = [1/n] gives TP

mix(ε) = O(1) for all ε > 0
! Kempe, Dobra and Gehrke [8] showed the existence of
an averaging algorithm with ε-averaging time O(log n)
for ε = Ω(1/nk) for any finite k in the context of
complete graph. The question still remained: how is
the ε-averaging time for arbitrary graph related to the
ε-mixing time? In [2], Boyd, Ghosh, Prabhakar and
Shah established that there are gossip algorithms with ε-
averaging time Θ(log n+TP

mix(ε)) for given matrix P and
ε = Θ(1/nk) for any positive finite k. Implicit in results
of [2], authors also establish that the for any randomized
gossip algorithm, the related matrix P is symmetric or
corresponding random walk is reversible. This estab-
lished equivalence between optimal randomized gossip
averaging algorithm and fastest mixing reversible ran-
dom walk on graph. Consequently, randomized gossip
algorithms are only as fast as mixing of reversible
random walks. Now, reversible random walks exhibit
diffusive behavior. Precisely, for a large class of graph
(e.g. bounded growth) the spectral gap s(P ) scales as
1/Φ(P )2 where Φ(P ) is the conductance defined as

Φ(P ) = min
S⊂V,|S|≤n/2

∑
i∈S,j /∈S πiPij

π(S)
,

for P where Pπ = π and π(S) =
∑

i∈S πi. For
example, in the context of path graph for any reversible
P , Φ(P ) = Ω(1/n) and s(P ) = Ω(1/n2). In contrast,
a simple centralized deterministic scheme will have ε-
averaging time Θ(n). A natural question: is it possible
to improve the behavior of gossip averaging algorithm
beyond mixing time of reversible random walk?

C. Our Contribution

We answer the above question in affirmative. Specif-
ically, given matrix P , we device deterministic gossip
algorithm that have ε-averaging time scaling proportional
to 1/Φ(P ). We state our precise result as follows.

Theorem 1: Let ∆ be maximum vertex degree of
network-graph G = (V,E). Given a graph conformant
P , such that P1 = 1, we obtain a deterministic aver-
aging algorithm A such that for ε = Θ(1/nk) for any
finite k,

TAave(ε) = O

(
∆ log2 n

Φ(P )

)
.

An immediate Corollary of Theorem 1 is as follows:
Corollary 2: If G is a path graph of n nodes, then

there exists a deterministic gossip averaging algorithm
A such that for any ε = Θ(1/nk) with positive constant
k, TAave(ε) = O

(
n log2 n

)
.

Note. A recent gossip algorithm by Mosk-Aoyama
and Shah [11] for computing separable function can
be used to compute average with ε-averaging time
O(ε−2Φ−1(P )). While this is the best known for finite
ε, it becomes very large for ε scaling down with n (e.g.
ε = 1/n). In such regime, the algorithm of this paper will
be the most effective. Such high-precision algorithms are
necessary for many tasks such as wireless scheduling
[10].

D. Organization

The rest of the paper is organized as follows. In
Section II we prove Theorem 1 by presenting gossip
algorithm based on Non-reversible random walks (RW)
of Diaconis-Holmes-Neal [4] and Chen-Lovasz-Pak [3].
We will describe [3] for arbitrary graph and specialize
it to path graph, which is similar to [4]. We note that
results of [3] are generalization of [4]. In Section III,
we describe a distributed maximal matching algorithm.
We use this algorithm as a sub-routine in the algorithm
of Section II.

II. AVERAGING VIA NON-REVERSIBLE RW

Given graph G conformant matrix P such that P1 =
1, we describe a gossip algorithm that satisfied claim of
Theorem 1.

A. Non-reversible Q via P

Chen-Lovasz-Pak [3] presented construction of a ma-
trix Q (not G conformant) by lifting the graph G to a
larger graph Ĝ, that has mixing time linearly scaling in
1/Φ(P ). First, we describe this construction and then
show how it can be projected down on G to obtain
a gossip algorithm with running time proportional to
mixing time of Q.
Construction of [3]. We describe lifting of P to Q as
in [3], but somewhat differently for ease of exposition
(for more details, we refer interested to [3]). The graph
G of n nodes is lifted to graph Ĝ = (V̂ , Ê) of upto n3

nodes by making L(i) ≤ n2 copies of node i, 1 ≤ i ≤ n,
denoted as i1, . . . , iL(i). The edges Ê are such that: (1)
(i1, j1) ∈ Ê iff (i, j) ∈ E; (2) for any 1 ≤ p < q ≤ L(i),
(ip, iq) ∈ Ê only if p = 1; (3) for p ≤ L(i), q ≤ L(j),
(ip, jq) ∈ Ê only if (i, j) ∈ E and if (ip, jq) ∈ Ê then
(ip, jr) /∈ Ê for all 1 ≤ r ≤ L(j), r 6= q. In [3], a Ĝ
conformant probability matrix Q is defined that has the
following property.
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Lemma 3: Q admits a unique stationary distribution
on Ĝ. Let Qσ = σ, then for ε = Θ(1/nk) with finite k,

L(i)X
p=1

σip =
1

n
and T Q

mix(ε) = O

„
log2 n

Φ(Q)

«
. (1)

Lemma 3 is proved in [3]. Now, we use the Q to compute
average over G. Let m = |V̂ | and y(t) ∈ Rm

+ be vector
of values at nodes of Ĝ under the following dynamics:
y(0) = [yv] where yv = xi if v = i1 and 0 otherwise.
For t ∈ Z+,

y(t + 1) = Qy(t). (2)

Define corresponding vector of values of nodes in G,
x(t) = [xi(t)] ∈ Rn

+, t ∈ Z+ as

xi(t) =
L(i)∑
p=1

yip
(t). (3)

Note that x(0) = [xi] as defined by (3).
Lemma 4: For t ≥ TQ

mix(ε),

‖x(t)− xave1‖1

nxave
< ε.

Proof: Proof sketch is as follows: without loss of
generality, assume ‖x(0)‖1 = 1. Using Lemma 3 and
triangular inequality for | · |, we obtain

‖x(t)− xave1‖1

nxave
= ‖x(t)− 1

n
1‖1

=
n∑

i=1

|xi(t)− 1/n| =
n∑

i=1

∣∣∣∣∣∣
L(i)∑
p=1

yip
− σip

∣∣∣∣∣∣
≤ ‖y(t)− σ‖1. (4)

Definition of TQ
mix(ε), (4) imply the Lemma 4.

Lemma 4 suggests that it is sufficient to simulate the
dynamics of (2) in graph G via gossip algorithm. We do
that next.
Gossip simulation of (2). We will show that a y(t + 1)
can be computed via a gossip algorithm given y(t) in
O(∆) steps. For this, decompose edges E of G into
collection of matchings with disjoint edges as follows.
Initially, set E0 = E, G0 = G and iteration k = 0. In
iteration k, run distributed maximal matching algorithm
RMA (described in Section III-A) to obtain matching
Πk. Set Ek+1 = Ek − Πk, k = k + 1. If Ek = ∅ stop,
else repeat.

Lemma 5: Due to property of RMA that it finds max-
imal matching, the algorithm stops within 2∆ iterations.

Proof: We sketch the proof in interest of space: if
Lemma is not true then there is an e ∈ E, that is not
chosen by 2∆ iteration. Then due to property of maximal
matching there must be 2∆ other edges chosen in first

2∆ iterations that shared a vertex with e. But maximum
degree being ∆, this is not possible.

Now, we have E = ∪2∆
k=1Πk, where all edges of Πk

are different (and possibly some Πk = ∅). This takes
O(∆ log2 n) iterations w.h.p. as established in Section
III-A.

Now, for simulation each node i ∈ V creates virtual
nodes i1, . . . , iL(i) of Ĝ and maintains yip

(t), 1 ≤ p ≤
L(i). For t = 0, each i knows yi1(0) = xi and yip

(0) =
0, p 6= 1. Inductively, we assume that each node i ∈ V
knows yip(t), 1 ≤ p ≤ L(i). Now we’ll show how each
i ∈ V can compute yip

(t + 1), 1 ≤ p ≤ L(i) via a
gossip algorithm in 2∆ + 1 time-slots, 0 ≤ k ≤ 2∆.
In k = 0th slot, each ip sends yip

(t)Qiqip
to node iq,

1 ≤ p, q ≤ L(i). This can be done at node i itself
as all ip are maintained at i itself. In kth time-slot,
1 ≤ k ≤ 2∆, communications are done according to
matching Πk (thus satisfying gossip constraint of G). If
(i, j) ∈ Πk, then for all (ip, jq) ∈ Ê send yip

(t)Qjqip

from ip to node jq and send yjq
(t)Qipjq

from jq to
ip. All these transmissions can be done simultaneously
along edge (i, j) as nodes i and j have access to required
information as well as these can be packaged together in
a single message1. At the end of all 2∆ + 1 time-slots,
assign yip

(t + 1) as the sum of all received values at
node ip. By definition,

yip
(t + 1) =

n∑
j=1

L(j)∑
q=1

Qipjq
yjq

(t). (5)

The (5) is identical to (2). Thus, we have showed how to
simulate one-step of (2) via a gossip algorithm in O(∆)
time-steps. Putting all the above discussion together, we
obtain the following (which implies Theorem 1).

Theorem 6: The above described simulation of (2)
and (3) gives a deterministic gossip algorithm A, such
that for ε = Θ(1/nk) for finite k,

TAave(ε) = O

(
∆ log2 n

Φ(P )

)
.

Non-reversible Q for path. We explicitly describe non-
reversible RW of [4] for path of n nodes: for each
node 1 ≤ i ≤ n, create two copies (i, +) and (i,−).
Intuitively, + is right direction and − is left direction.
The transition matrix Q on these 2n nodes is defined as
follows: (1) Q(i,+)(i+1,+) = 1− 1/n, for 1 ≤ i < n, (2)
Q(i,+)(i+1,−) = 1/n, for 1 ≤ i < n, (3) Q(i,−)(i−1,−) =
1 − 1/n, for 1 < i ≤ n, (4) Q(i,−)(i−1,+) = 1/n,

1It is contentious to assume the possibility of all upto
max{L(i), L(j)} numbers transmitted together as one message. We
allow this in our model. If computed separately, the complexity can
increase at most by maxi L(i). For path graph, the construction of [4]
has L(i) = O(1).
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for 1 < i ≤ n, (5) Q(n,+)(n,−) = 1 − 1/n, (6)
Q(n,+)(n,+) = 1/n, (7) Q(1,−)(1,+) = 1 − 1/n, and (8)
Q(1,−)(1,−) = 1/n. As shown in [4], the TQ

mix(1/nk) =
O(n log n) for finite k.

III. DISTRIBUTED MAXIMAL MATCHING

In this section, we describe and analyze a randomized
distributed maximal matching algorithm. We believe that
it will be of great interest in many other applications in-
cluding other gossip algorithm and wireless scheduling.
The algorithm, we believe, is certainly well known in
some version. However, the analysis of this algorithm is
new. Matchings are extremely well-studied combinato-
rial objects and there are a large number of different
algorithms to find different types of matching. Here,
we recall some of the well-known distributed matching
algorithms. Karp, Upfal, Wigderson [7] and Mulmu-
ley, Vazirani, Vazirani [12] gave randomized distributed
algorithms to find maximum size matching that take
O(poly(log n)) running time with O(n3.5) processors.
In contrast, our model has O(n) processors (i.e. n nodes
of graph). In the context of maximum weight match-
ing, Bertsekas [1] gave distributed auction algorithm,
which may take upto O(n) iterations to converge. For
maximal matching, there is a well known (and rather
obvious) distributed algorithm: pick edges one by one
in arbitrary fashion maintaining matching structure till
one can. Though very simple, best known bound on the
performance of such algorithm is O(n). A randomized
algorithm (somewhat more complicated that ours) by
Israeli and Itai [5] was shown to take O(log2 n) iterations
on average. However, it does not have such performance
with probability 1−O(1/nk) for any finite k. We need
such high probability guarantee, which will be proved
for algorithm described next.

A. Algorithm and Analysis

We consider randomized version of the above stated
naive maximal matching algorithm with O(n) proces-
sors. In contrast to the above results, we find that the
algorithm finds maximal matching in O(log2 n) time w.
h. p. for arbitrary graph. First, we state algorithm.

Algorithm RMA.

(1) Initially, iteration i = 1 and all vertices are un-
matched.

(2) In iteration i, do the following:
(i) Each unmatched vertex having at least one

unmatched neighbor decided to be left or right
with probability 1/2 independently.

(ii) If a vertex, say vl, becomes left, it requests
to one of its unmatched neighbor uniformly at
random.

(iii) If a vertex, say vr, becomes right, on receiving
requests from one or more left neighbors, it
chooses one of them uniformly at random, say
u. Set vertices vr and u as matched and they
inform all of their unmatched neighbors about
it.

(3) Set i = i + 1. Repeat from (2) till no more edge
can be added.

Theorem 7: For any graph G, the RMA algorithm
finds a maximal matching in O(log2 n) iterations with
probability at least 1 − O(1/n`), for any finite `. For
complete graph with n nodes, the algorithm RMA takes
Ω(log n) iterations to compute maximal matching with
probability 1−O(1/n2).

Proof: We present the proof of Upper bound. The
lower bound of the algorithm follows by studying its
behavior for complete graph. We will skip the proof of
lower bound in the interest of space.

Upper bound. Given `, let C be a constant satisfying
( 1
2 + 1

2e−
1
4 )C < e−`−2. We show that for any graph G,

the RMA finds maximal matching in O(log2 n) iterations
with probability at least 1−O(log n/n). To prove this,
we divide the first C(log n)(1 + log n) iterations of
RMA into 1 + log n stages, each stage consisting of
C log n iterations. Thus, iterations {(k − 1)(C log n) +
1, . . . , k(C log n)} correspond to stage 1 ≤ k ≤ 1 +
log n. Let i−k

4
= (k−1)(C log n)+1 and i+k

4
= k(C log n)

During the execution of algorithm RMA, the degree of
unmatched vertices decrease as the matched vertices and
edges incident on them are subsequently removed. Also,
if a vertex is matched, we say that the vertex has degree
0. In this setup, let Ak denote the event that at the end
of stage k, all vertices of G have degree at most n

2k . We
claim the following.

Claim 8: For k = 1, 2, . . . , 1 + log n,

Pr[Ak|Ak−1] > 1− 1
n`+1

.

Proof: Note that Pr[A0] = 1. Now, consider k ≥
1. We wish to evaluate Pr[Ak|Ak−1]. Given Ak−1, all
vertices have degree ≤ n

2k−1 for i ≥ i−k . Let v be a vertex
with n

2k < deg(v) ≤ n
2k−1 at the beginning of the stage

k, where deg(v) denotes the degree of vertex v. For
(k−1)(C log n)+1 ≤ i ≤ k(C log n), let Bv,i be the event
that after iteration i, deg(v) ≥ n

2k . Now, by definition
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Ac
k ⊆ ∪v ∩i−k ≤i≤i+k

Bv,i. Hence,

Pr[Ac
k|Ak−1] ≤ Pr

h
∪v ∩i−

k
≤i≤i+

k
Bv,i|Ak−1

i
≤
X

v

Pr
h
∩

i−
k
≤i≤i+

k
Bv,i|Ak−1

i
=
X

v

Pr(B
v,i−

k
|Ak−1)

Y
i−
k

<i≤i+
k

Pr [Bv,i|Bv,i−1; Ak−1]

≤
X

v

Y
i−
k

<i≤i+
k

Pr [Bv,i|Bv,i−1; Ak−1]

≤
X

v

 
1 + e−

1
4

2

!C log n

(6)

≤ n× e−(`+2) log n ≤ 1

n`+1
=

1

n
, (7)

where justification for (6) is provided next. Note that, (7)
completes the proof of Claim 8. Now, if vertex v gets
matched in iteration i, then Bv,i does not hold. Next,
we show that given Bv,i−1∩Ak−1, v gets matched with

probability 1− 1+e−
1
4

2 . This will imply the bound used
in (6).

Given Bv,i−1∩Ak−1, i becomes right with probability
1/2. When it becomes right, the (conditional on event
Bv,i−1∩Ak−1) probability that it does not get matched,
denoted by P̄v,i, is upper bounded as

P̄v,i ≤
deg(v)∑
j=0

(
deg(v)

j

) (
1
2

)deg(v) (
1− 2k−1

n

)j

=
(

1− 2k−2

n

)deg(v)

< e−
1
4 . (8)

From above discussion and (8) the bound in (6) follows.

Next, we use the Claim 8 to complete the proof of
Theorem 7 as follows. A1+log n implies that all nodes
have degree < 1, that is, 0. Thus algorithm finds a
maximal matching of G if A1+log n holds. Now,

Pr[A1+log n] ≥ Pr [A1+log n|Alog n] Pr [Alog n] .(9)

Using the above argument repeatedly, we obtain

Pr[A1+log n] ≥

 
1+log nY

k=1

Pr[Ak|Ak−1]

!
× Pr [A0]

>

„
1− 1

n`+1

«log n

= 1−O(n−`),(10)

where we used the fact that Pr[A0] = 1. This completes
the proof of upper bound. We note (rather straight-
forward) that probability of bad event happening can be
bounded above by any 1/poly(n) by selecting appropri-
ate constant C.

IV. CONCLUSION

Motivated by applications peer-to-peer, wireless sen-
sor and ad-hoc networks, we study gossip algorithms for
averaging. Most of the previously known iterative algo-
rithms suffered from the diffusive nature of reversible
random walk. The algorithm of [11], based on prop-
erty of exponential distributions, improves upon these
algorithms but has poor scaling in the error-parameter.
To overcome this, we presented deterministic gossip
algorithm that utilizes non-reversible random walk. As
a result, for a large class of graphs the time to compute
average becomes square-root of the time taken by algo-
rithms based on reversible random walk. For example,
the time to average on a path graph becomes O(n log2 n)
instead of O(n2 log n) for algorithm based on reversible
random walk.

As a sub-routine of our algorithm, we developed a
new distributed maximal matching algorithm which finds
maximal matching in any graph in O(log2 n) time. This
algorithm will be of separate interest in the context of
scheduling and other gossip algorithms.
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