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Abstract— The main reason behind the complexity of coding-
decoding scheme is the randomness in the source or channel
noise. We model source or channel noise as pseudo-random to
study the limitation of coding-decoding schemes in the presence
of an adversary. In this adverserial model, we characterize
the limitations of computationally bounded source and chan-
nel coding-decoding schemes in terms of classical Information
theoretic quantities such as shannon capacity and entropy. It
is well-known that from a small amount of truly random bits,
a very large amount of pseudo-random bits can be generated
(under certain hypothesis). Subsequently, we find that in our
adverserial model with computationally bounded schemes, the
channel capacity becomes arbitrarily smaller compared to the
classical shannon capacity or compressible source becomes in-
compressible. As a byproduct, our results will lead to novel
(negative) characterization of pseudo-random generators.

I. INTRODUCTION

In this paper, we present a way to characterize the limi-
tations of computationally bounded coding-decoding schemes
for source compression and noisy channel in the presence of
adversary.

A. Information Theory: Classical Result

The paper by Shannon [1] presented fundamental results
characterizing the maximal compression of a random source
as well as the maximal rate of transmission over a noisy
channel. We present a quick summary of the known results
for completeness. An interested reader can find details and
other related results in books such as [2], [3].

Source coding theorem. The source coding theorem is about
characterizing the minimal length required to described ran-
dom sequences. In that sense, it also provides the character-
ization of ”essential information in a random source”. Next,
we present the precise results.

Definition 1 (Entropy): Let X be a random variable taking
values in finite set X = {1, . . . ,Σ}. The entropy of (distribu-
tion of) X is defined as

H(X) = −
∑
x∈X

Pr(X = x) log Pr(X = x).

In this paper, we will restrict ourselves to finite X . However,
there are natural generalizations known for countably infinite
and continuous X .

Definition 2 (Lossy source coding): Let Xn denote the set
of all strings of length n ∈ N with each element from X .
Given a distribution µn on Xn and ε > 0, an ε-lossy source

code is a mapping Cn : Xn → X ∗ ∪ e such that (with respect
to µn)

Pr(E) < ε, and Cn(xn) 6= Cn(x̂n), ∀xn, x̂n ∈ Ec,

where E = {xn ∈ Xn : Cn(xn) = e}. Here, e denote ”loss”
in coding and we denote |Cn(e)| = 0.
The following theorem [1] characterizes the optimal source
coding.

Theorem 3: Let Xi, i ∈ N, be sequence of i.i.d. random
variable distributed like a random variable X taking values in
X and any ε > 0. Then, for any ε-lossy source coding Cn,
there exists n(ε) such that for all n ≥ n(ε),

1
n

E [|Cn(X1, . . . , Xn)|] ≥ H(X)− ε.

Further, there exists Ĉn, such that for n ≥ n(ε),

1
n

E
[
|Ĉn(X1, . . . , Xn)|

]
≤ H(X) + ε.

Channel coding theorem. The channel coding theorem is
about characterization of maximal rate at which data can be
transmitted over a noisy channel. In this paper, we consider
the case of discrete memory-less channel.

Definition 4 (Discrete memory-less channel): A discrete
memory-less channel is characterized by the triple (X ,Y, Q),
where X is the set of channel-input symbols, Y is set of
channel-output symbols and Q is the conditional probability
distribution of output y when x is transmitted over channel.
We assume that channel is memory-less, that is

Pr(yn|xn) =
n∏

i=1

Q(yi|xi).

Definition 5 (Capacity): The capacity of a discrete
memory-less channel (X ,Y, Q) is defined as

C(Q) = max
µ

H(Y )−H(Y |X),

where X is random variable distributed as µ over X ; Y be
output random variable when X is transmitted as input over
channel.

Definition 6 (Coding, decoding and probability of error):
Given channel (X ,Y, Q), an (n, K) code C is one-to-one
mapping from set of signals {1, . . . , 2K} to 2K distinct
n-vectors {x1, . . . ,x2K} where xi ∈ Xn. Rate of this code
is defined as R = K/n. Encoder transmits xi over channel to
convey i to receiver. Let Yi be random variable representing
received output when xi is transmitted over the channel.



A decoder, D is a mapping from received output, Yn to
{1, . . . , 2K} ∪ e, where e indicates failure in decoding. The
probability of error, Pe, is

Pe = 2−K
∑

1≤i≤2K

Pr(i 6= D(Yi)).

The following theorem [1], [2], [3] characterizes the optimal
transmission rate.

Theorem 7: Given channel (X ,Y, Q), an ε > 0 and R <
C(Q) there exists an (n, K) coding scheme C with rate R and
decoding scheme D with probability of error Pe < ε. Further,
for any R > C(Q) there exists positive ε > 0 such that for
any (n, K) code with rate R there is no decoding scheme with
Pe < ε.

B. Pseudo Randomness

The notion of pseudo-randomness was first introduced by
Blum-Micali [5] and Yao [4]. Intuitively, a distribution is
called pseudo-random if it can not be distinguished from true
distribution in a computationally efficient manner.

Definition 8 (Pseudo-random): Let µ1 = (µn
1 ) and µ2 =

(µn
2 ), where µn

1 , µn
2 be distributions on Xn. We say that µ1

is poly-time indistinguishable from µ2 if for all polynomial
time statistical tests A and any polynomial p, ∃n0 such that
∀n ≥ n0,∣∣∣∣ Pr

x∈µn
1

[A(x) = 1]− Pr
x∈µn

2

[A(x) = 1]
∣∣∣∣ <

1
p(n)

.

A distribution µ̂ = (µ̂n) is called pseudo-random µ = (µn),
if µ̂ is poly-time indistinguishable from µ.
In the above definition of statical tests, it is assumed that they
can be randomized.

Now, by definition a true distribution µ is pseudo-random µ
as well. However, there are known constructions that generate
large amount of pseudo-randomness from small amount of true
randomness. First define formally what we mean by a pseudo-
random generator. For this, we will assume that X = {0, 1}.
However, all definitions and constructions naturally extend for
any finite X .

Definition 9 (Pseudo-random generator): A polynomial
time deterministic program G : {0, 1}k → {0, 1}k̂ is a
pseudo-random generator (PSRG) with respect to distribution
µ = (µn)n∈N if the following holds: (1) k̂ > k, (2) µ̂k̂ is
pseudo-random µk where µ̂k̂ is the distribution induced on
X k̂ when G is applied to x which is drawn according to
uniform distribution on X k.

Many constructions of pseudo-random generators are
known, conditional on standard computational hypothesis.
Here, we present one such result. We refer interested reader
to book by Goldwasser and Bellare [8] for any missing details
in this paper as well as importance of pseudo-randomenss in
the context of cryptography and computational complexity.

Theorem 10: Let there exists a length preserving one-way
permutation f = (fn), where fn : {0, 1}n → {0, 1}n.
Then, for every polynomial P , using f it is possible to
construct a PSRG G : {0, 1}k → {0, 1}P (k) such that G(x) is

pseudo-random uniform on {0, 1}P (k) when x is distributed
as uniform on {0, 1}k.

Theorem 10 suggests that if we are given n truly random
bits, then they can be converted to nα pseudo-random bits for
any α ∈ N. We will use this to derive interesting implications
of our results.
Note. A seminal paper by Nisan and Widgerson [6] led to
many interesting results in the context of pseudo-randomness.
We also note that a survey paper by Shaltiel [7] provides recent
developments in the context of constructing extractors (intu-
itively, algorithm extracting almost uniform randomness out of
non-uniform distribution), using pseudo-random generators.

C. Our Results

The results of this paper is about characterizing the limita-
tions of computationally bounded source and channel coding
schemes. Now, classical computational complexity is defined
with respect to the worst-case or in an adverserial setup.
Hence, to understand the computational limitations of coding
schemes, we need to consider an appropriate adverserial setup.
Now, the questions remains how should one define adversary
for coding schemes.

As noted earlier, the main reason behind coding-decoding
complexity is the randomness in source (in the context of
source coding) and randomness in the channel noise (in the
context of channel coding). For example, if there was no
noise, then one does not need to code (or decode). On the
contrary, even if there is (almost) deterministic noise, if it can
not be learnt efficiently by coder-decoder, then it may require
complex coding-decoding algorithms.

The above considerations motivate us to model the ran-
domness in source and channel noise as pseudo-random to
understand the limitations of computationally bounded source
coding and channel coding schemes.

Source coding theorem. We first define a polynomial time
lossy compression scheme.

Definition 11 (Polynomial-time lossy compression): Given
an ε > 0, an ε-lossy compression scheme Cn : Xn → X ∗ ∪ e,
n ∈ N, for a source generating elements from X , is called
polynomial time if the operations done by Cn to map
xn ∈ Xn to Cn(xn) is polynomial in n. Such a compression
scheme is oblivious of the source distribution, however its
allowed to sample source distribution polynomial in n times
to possibly determine Cn.
It should be clear that a polynomial-time lossy compression
scheme Cn will always map xn ∈ Xn to ym ∈ Xm, where
m = poly(n).

Theorem 12: Let an adverserial source generates strings
X̂ = (X̂n)n∈N. Let the distribution of X̂n be µ̂n which is
pseudo-random µn. Let X = (Xn)n∈N be strings where Xn

is generated according to true distribution µn. Let ε > 0 be
given. Then, there exists large enough n0(ε) such that for
all n ≥ n0(ε) and any polynomial-time ε-lossy compression
scheme, Cn, ∣∣∣E[|Cn(X̂n)|]− E[|Cn(Xn)|]

∣∣∣ < ε.



Channel coding theorem. We will consider binary channel
with additive noise. In such channel, input and output alpha-
bets are binary, i.e. X = Y = {0, 1}. The noise is additive,
that is when x ∈ {0, 1}n is transmitted, noise t ∈ {0, 1}n (in-
dependent of x) is added to produce output y ∈ {0, 1}n. Thus,
y = t⊕x, where ⊕ denotes component-wise addition over Z2.
In such channel, the additive noise characterizes the channel
capacity. Hence, we model adverserial setup by modeling the
additive noise as pseudo-random. Next, we define polynomial-
time coding and decoding schemes for binary channel.

Definition 13 (Polynomial-time coding-decoding): An
(n, K) code C and corresponding decoder D are called
polynomial-time coding-decoding if the following holds:
mapping any i ∈ {1, . . . , 2K} to C(i) and mapping any
output Yi to D(Yi) requires operations that are polynomial
in max(n, K). The rate of such a code is K/n as defined
earlier.
Now, we state our result that relates the capacity of
polynomial-time coding-decoding schemes to the shannon
capacity.

Theorem 14: Consider an additive binary channel. Let
T̂n ∈ {0, 1}n denote the additive noise random variable. Let
the distribution of T̂n be pseudo-random B(n, p), the binomial
with parameter p ∈ (0, 1). Let ε > 0 be given. Consider any
polynomial-time coding decoding scheme C and D with an
(n, K) code. Let Pe(Zn) denote probability of error when
noise is Zn. Then, there exists large enough n0(ε) such that
for n ≥ n0(ε), ∣∣∣Pe(T̂n)− Pe(Tn)

∣∣∣ < ε,

where Tn is distributed as B(n, p).
A straight-forward corollary of Theorem 14 is as follows:

Corollary 15: Consider an additive binary channel. Let
T̂n ∈ {0, 1}n denote the additive noise random variable.
Let the distribution of T̂n, µ̂n, be pseudo-random B(n, p),
binomial with parameter p ∈ (0, 1). Then, for R > C(p) =
1 − H(p), there exists an ε > 0 and n0(ε) such that for
all n ≥ n0(ε) there is no ε-good polynomial-time coding
decoding scheme that operates at rate R.

D. Organization

Rest of the paper is organized as follows. Section II presents
proofs of the main theorems. Section III presents implications
of our results, discussion and directions for future work.

II. PROOFS OF THEOREMS

In this section, we present proofs of Theorems 12 and 14.

A. Proof of Theorem 12

The proof follows by a straightforward use of the definition
of pseudo-randomness. To this end, consider a polynomial
time ε-lossy compression scheme Cn : Xn → X≤m∪e, where
m = p(n) some polynomial in n and

X≤m = ∪k≤mX k.

By definition, |Cn(x)| ≤ p(n) for all x ∈ Xn. Now, define a
randomized polynomial time statistical test A(x) as follows:
choose i ∈ {1, . . . , p(n)} uniformly at random. Declare
A(x) = 1 if |Cn(x)| ≥ i and 0 otherwise.

Note that A is a randomized (with O(log n) bits of ran-
domness) polynomial time algorithm because Cn is polynomial
time. Hence, the definition of pseudo-randomness implies that
for given ε > 0, there exists a n0(ε) (independent of A, Cn)
such that for n ≥ n0(ε),∣∣∣Pr[A(X̂n) = 1]− Pr[A(Xn) = 1]

∣∣∣ <
ε

n2p(n)
, (1)

where we use the fact that distribution of X̂n is pseudo-
random µn, the distribution of Xn. Now, from (1) we obtain∣∣∣∣∣∣
p(n)∑
i=1

Pr[|Cn(X̂n)| ≥ i]
p(n)

−
n∑

i=1

Pr[|Cn(Xn)| ≥ i]
p(n)

∣∣∣∣∣∣ <
ε

n2p(n)
.(2)

Since |Cn(·)| ≤ n, we obtain that

E[|Cn(Z)|] =
p(n)∑
i=1

Pr[|Cn(Z)| ≥ i], (3)

for Z = X̂n, Xn. From (2) and (3), we immediately obtain
that ∣∣∣E[|Cn(X̂n)|]− E[|Cn(Xn)|]

∣∣∣ <
ε

n2
≤ ε. (4)

This completes the proof of Theorem 12.

B. Proof of Theorem 14

We will prove Theorem 14 just like Theorem 12. Let ε > 0
be given. Let there be a polynomial-time coding and decoding
schemes C and D, where C is an (n, K) code with rate R =
K/n.

Define an algorithm Ai, 1 ≤ i ≤ 2K that takes as input
the noise sequence Zn and outputs 0 or 1 as follows: Map i
to xi = C(i) using the code and transmit over channel with
additive noise Zn. The corresponding output is Yi = xi⊕Zn.
Decode Yi by mapping it via decoder D(Yi) ∈ {1, . . . , 2K}.
Declare A(Zn) = 1 if D(Yi) = i and 0 otherwise.

From above description, the Ai outputs 0 if and only if
there is an error in decoding. The algorithm Ai is polynomial
time as C,D are polynomial time. Given ε > 0, by definition
of pseudo-randomness there exists an n0(ε) such that for all
n ≥ n0(ε) for all i, 1 ≤ i ≤ 2K , the following holds:∣∣∣Pr(Ai(T̂n) = 1)− Pr(Ai(Tn) = 1)

∣∣∣ < ε. (5)

Equivalently,∣∣∣Pr(Ai(T̂n) = 0)− Pr(Ai(Tn) = 0)
∣∣∣ < ε. (6)

That is, for all 1 ≤ i ≤ 2K ,∣∣PrT̂ n(D(Yi) 6= i)− PrT n(D(Yi) 6= i)
∣∣ < ε, (7)



where PrZ means probability induced by distribution of Z.
From (7) and definition of probability error, Pe(·) it immedi-
ately follows that∣∣∣Pe(T̂n)− Pe(Tn)

∣∣∣ < ε. (8)

This completes the proof of Theorem 14.

III. DISCUSSION

In this section, we present interpretation of Theorems 12-
14 and related discussion. The results, as discussed below will
possibly lead to interesting characterization of pseudo-random
generators.

A. Source Coding Theorem

First, we consider Theorem 12. Consider a pseudo-random
source that generates binary symbols. Let Xn = (X1, . . . , Xn)
be sequence of symbols generated by source for n ∈ N.
Let the distribution of Xn be pseudo-random B(n, 1/2). Let
ε > 0 be given. Consider an ε-lossy polynomial time coding
(compression) scheme and let `(Xn) denote the length of the
coded sequence. Then, by Theorem 12 and Theorem 3,

E[`(Xn)]
n

≥ 1− ε. (9)

By Theorem 10, it is possible to generate pseudo-random
B(n, 1/2) from B(nα, 1/2) for arbitrarily small α > 0. But
the essential information in B(nα, 1/2) is only nα bits. Thus
(9) implies under the adverserial model of this paper, the
compression can become arbitrary bad. Now, lets contrast this
with well-known Lempel-Ziv coding theorem (from Chapter
12, [2]).

Theorem 16: Let {Xn}, n ∈ N, be a binary stationary
ergodic process. Then, there exists a coding scheme that codes
(X1, . . . , Xn) in O(n2) operations. Let `(X1, . . . , Xn) be the
length of the coded sequence. Then,

lim sup
n→∞

`(X1, . . . , Xn)
n

≤ H(X), with prob. 1,

where H(X) = limn→∞H(Xn|X1, . . . , Xn−1).
Our implication and Theorem 16 suggests that the pseudo-
random sequences can not form stationary ergodic process !
Further implications of such well-known results in characteriz-
ing structural properties of pseudo-random generators remains
the topic of future research.

B. Channel Coding Theorem

Here, we consider Theorem 14. To this end, suppose we
are given additive binary channel with noise sequence T̂n be
pseudo-random B(n, 1/2). Then, by Theorem 7 and Theorem
14, for any ε > 0 there is no (n, K) code with n ≥ n0(ε) that
transmits at rate larger than ε. By Theorem 10, such a noise can
generated from B(nα, 1/2) for any α > 0. Suppose, originally
we were given a channel with noise distributed as B(n, p)
for a very small p > 0. The capacity of channel with noise
as B(n, p) is ≈ 1 − ε for p small enough. It is well-known
(e.g. result of von Neumann [9]) that such a noise can be

converted into equivalent B(m, 1/2) so that H(B(m, 1/2)) ≈
H(B(n, p)). For any positive p > 0, m = nβ where β > 0 a
small constant. This can be used by PSRG as explained above
to create pseudo-random noise.

Putting the above together, we find that when noise is
generated adverserialy, then the capacity becomes arbitrarily
small !

Such a result can provide plausible explanation to the
following scenario (suggested by R. Koetter): suppose you are
a painter and want to post your picture on-line. However, you
are afraid of thieves who will steal your picture and claim
its ownership. To avoid this, you would do digital water-
marking by adding some noise to the picture. If a lot of noise
is added then you may loose the quality of picture and if
little noise is added then you may loose security. The above
discussion suggests that by adding pseudo-random noise, you
may preserve both quality of picture and security.
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