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Abstract—In a wireless network, a sophisticated algorithm is
required to schedule simultaneous wireless transmissionshile
satisfying interference constraint thattwo neighboring nodes can
not transmit simultaneously. The scheduling algorithm need to be
excellent in performance while being simple and distribute® so
as to be implementable. The result of Tassiulas and Ephremis
(1992) imply that the algorithm, scheduling transmissionsof
nodes in the 'maximum weight independent set’ (MWIS) of
network graph, is throughput optimal. However, algorithmically
the problem of finding MWIS is known to be NP-hard and
hard to approximate. This raises the following questions: $ it
even possible to obtain throughput optimal simple, distrituted
scheduling algorithm? if yes, is it possible to minimize dely of
such an algorithm?

Motivated by these questions, we first provide a distributed
throughput optimal algorithm for any network topology. How -
ever, this algorithm may induce exponentially large delay.To
overcome this, we present an order optimal delay algorithm
for any non-expanding® network topology. Networks deployed
in geographic area, like wireless networks, are likely to beof
this type. Our algorithm is based on a novel distributed gragm
partitioning scheme which may be of interest in its own right
Our algorithm for non-expanding graph takes O(n) total message
exchanges orO(1) message exchanges per node to compute
schedule.
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A. Scheduling in wireless network

We consider an abstract model of wireless network given
by graphG = (V, E) with |V | = n wireless nodes and edges
represented by’. We consider the classical interference model
for multi-access channel which imposes the constraint that
two neighboring nodes can not transmit simultaneously- Sub
sequently, simultaneously transmitting nodes must cpared
to independent setf G. When nodes are given weights, the
weight of an independent set is the summation of weights of
nodes in the independent set.

Based on results of Tassiulas and Ephremides [2] and
optimization formulation of resource allocation, a thrbug
put optimal algorithm for resource allocation and schedyli
is equivalent to finding ‘maximum weight independent set’
(MWIS) in G every time, where weight is function of queue-
size and other network parameters. We refer interesteeread
to a recent survey by Lin, Shroff and Srikant [1] where a
detailed account of this development is given for wireless
network withnode-exclusiventerference model (aka matching

aconstraints).

B. Previous work

We present a brief summary of previous work on network
scheduling algorithms. The result by Tassiulas and Epldesni
E] established that ‘max-weight scheduling’ policy isdbgh-

ad-hoc networks and metro-area networks or mesh-networkgt optimal for a large class of scheduling problems. This

The tasks of resource allocation and scheduling are eabserfgsult has been very influential in design of scheduling -algo
for good network utilization. Wireless medium being multitithms since then. Application to input-queued switchebstte
access makes algorithm design for such network intringicah excellent development of theory and practice of algorith
different and more challenging than its wireline counteky scheduling under matching constraints: notably, tiselte

part. Further, wireless architecture requires that algpribe
distributed and simple.

of [3]-[9]. A recent interest in wireless network has led to
proposal of distributed scheduling algorithms under matgh

Despite these challenges, there has been an exciting ree@straints [10]-[13]. Most of these algorithms, based on
progress based on optimization frame-work to characterigfding maximal matching, guarantee only a constant fractio
good resource allocation algorithm that combine resourgethroughput. Recently, Modiano, Shah and Zussman [14] ex-
allocation and scheduling (see [1], for example). Howevaiibited a throughput optimal distributed scheduling aition
these solutions either assume availability of good schegul with matching constraints. This algorithm, as discussedn
algorithm or use of imperfect scheduling (which will lead t@asily extends to provide throughput optimal algorithm for

poor performance). In this paper, we are interested in desigesource allocation and scheduling problem under matching
ing simple to implement, distributed and high-performancgnstraints.

scheduling algorithms.

1in this paper, by distributed we mean that algorithm opegatit nodes of
the network can only utilize local topological information

2Weight is an appropriate function of queue-sizes and plyssither
network parameters.

3See section IV for precise definition of the non-expandinapbr

Apart from matching constraints, other scheduling con-
straints have received limited attention primarily duertbar-
ent hardness of the other constraints. For example, Sharma,
Mazumdar and Shroff [15] identify that max-weight schedul-
ing with K —hop matching constraint becomes an instance
of computationally hard combinatorial optimization preioi.



They provide a centralized throughput optimal algorithm fo(3) (Absence-of-thick-boundafyffor any e > 0, there exists
unit disk graphs based on work by Hunt et. al. [16]. However, constant{(e) such that
hardness of the max. wt. problem does not imply non-exigtenc

. . ip . . L(€)
of throughput optimal algorithm. Specifically, in this papes o 5
provide throughput optimalistributedalgorithm (ALco ) for Z fo(0)7| < eFi(le)).
hard independent set constraint (it will naturally extendhe =1
K-hop matching model of [15] as well). Example 1.Consider a,/n x /n grid graph ofn nodes in
C. Contribution two-dimension. Then, foD = D¢ it is non-expanding as we

The maximum weight independent set (MWIS) algorithrﬂavef”(l) = O(i) (with £(e) = Q(_l/_r—:)). :
is throughput optimal for our setup. However, finding MWISEXamIOIe 2:5uppose ther_e are _|nf|n|tely many nodes placed in
is NP-hard [17] and hard to approximate within—°(1) a plane (or even three dimension) so that for sdh_us _O, (g)
(3/20(\/@) for degreeB graph) factor [6]. This raises anodes are connected to each other if the)_/ are WIFhIn dlstapce
challenging question: is it even possible to have any thieug’® of each other, and (b) number of nodes in any disc of radius
put optimal, polynomial (inz) time distributed algorithm? if 12 1S bounded above by and below byl wherea < (0,1/2]
yes, how does it's delay scale ? more generally, is it passitA"d”y = 1 are constants. Now consider any square of side-

to have both throughput and delay optimal polynomial tim UgthN in pl_arr;]e. L_et_G be the grapg_ formed Ey ners r\:vithilnS

distributed algorithm for practical network topology? Aset t .'Sh square. Then |_td|)s_ngn}%exphan |;_g aEs sl_dqwndl_n the [18],

main contribution of this paper, we answer these tantajizif/ith réspect to metri& = d/ R whered is Euclidian distance.

questions in affirmative. Note that _such a _model captures the nature of wireless nodes
First, we exhibit a distributed throughput optimal schéngyl dePloyed in practice.

algorithm that take®)(n?) total operations to compute schegRémark: Finally, some remarks on our results: (a) We con-
ule (section I11). By computing schedule oncedi{n?) time sider the single-hop model. However, it should be clear to an

the cost per time i©)(1). Suchlazy schedule is throughput Iformed reader that exactly the same algorithms with e
optimal. That is, it is not difficult to have stable schedglinWeights will provide desirecbptimal performance: weights

algorithm even when scheduling constraints are very haRfing “difference of queue-sizes” under multi-hop model of
However, this algorithm is likely to induce exponentiatiydge 2] @nd weights being appropriate Lagrange parameters for

(in n) delay. This suggests that the complexity of algorithffSource allocation in multi-hop network as explained ip [1
trades off with delay rather than throughpui. (b) The independent set constraint is general enough abstra

Next, we present a delay (order) optimal scheduling a|gg1odel to capture any combinatorial scheduling constrairjt.
rithm that essentially finds excellent approximation to Mgy 1NUS, our results should extend to a large class of scheglulin
in O(n) operations in total orO(1) operations per node problem. For example, a natural adaptation afc® | for

for ‘practical networks’ modeled as non-expanding grapH&-hoP matching model will provide distributed throughput
(section IV). The algorithm is distributed and simple. It i9Ptimal algorithm (thus, answering the question impcit
based on a new randomized distributed graph partitioninig wf2is€d in [15]). (c) We note conceptual similarity ofLao
certain properties. Next, we provide definition and exampl¢! With that of [16]. However, inherently the algorithm of

of non-expanding graph without making them mysterious 616l is centralized (uses dynamic programing and centelliz
reader till later in the papér graph partition) while ours is distributed.

Non-expanding graph&iven a graptG = (V, E), letD : V' x
V — R, be a metric on nodes d&f. A special metric induced
by G is the shortest-path distance metreg : V xV — R, As before, letG = (V, E) be the undirected network graph
where D¢ (u,v) is the length of shortest path connectingy  With [V| = n. Let N(v) = {u € V : (u,v) € E} denote
(co if u,v are not connected). With respect to a given metribe set of all neighbors of € V. The time is assumed to
D (not necessarilyD;), for a given vertexs € G andi € N, be slotted and- € Z, denote the time. Each nodec V'

let f,(i) = |[{w € V :i—1 < D(v,w) < i}|, and F,(i) = is capable of wireless transmission at unit rate to any of its
{weV:D(vw) <i} = 2321 fo (). neighbor. We ignore the power control for simplicity but as
' reader may notice, it can be easily included in the model.
At each node, packets (of unit size) are arriving according
to an external arrival process. Let(r) = [A,(7)] denote
the cumulative arrival process until timeec Z,, i.e. A,(7)

II. NOTATIONS AND MODEL

Definition 1 A graphG is said to be “non-expanding” if there
exists a metricD : V x V — R, constantsA, 3 such that
(0) (Contracting) D < Dg, i.e. D(u,v) < Dg(u,v),

vV (u,0) €V x V. be the total number of packet arrived at nadén the time
(1) (Bounded neighborsf,(1) < A forall v € V. interval [0, 7]; A(r) = 0. Let A, (7) = A,(r) — A, (7 — 1) be
(2) (Polynomial-growth) F’, (3i) < SF,(i) V . the number of packets arriving at noden time slotr. We

4Alternatively, reader may skip this definition and come baakit on assume that at most one packet can arrive at a mottea

reaching section IV.
5The condition immediately implies tha, (k) < k'°23 8. Hence the name ~ The condition says that no ’boundary’ formed by nodes at diquéar
polynomial-growth. distance should have most of the nodes till radge).



time slot, i.e.A,(7) € {0,1}. Finally, we assume that,(-) P2. APRx-CNT(e) takes given independent set and node

are Bernoulli i.i.d. random variable wifr(A,(7) = 1) = A,. weights TV and produces an estimate of = (I, W),
Let A = [\,] denote the arrival rate vector. sayw, so thatw € ((1—e)wy, (14+&)w;) with probability

For simplicity and ease of explanation, we assume that at leastl —3~" in total O(n?®) distributed operations for
network is a single-hopi.e. data arriving at a nodeis to be any G.

sent to one of its neighbors. L&, (7) denote the queue-size atALGO |
nodev at timer with Q(7) = [Q.(7)]. We assume the system

starts empty, i.eQ(0) = 0. Let D(r) = [D,(7)] denotes the o |et(r) be independent set schedule chosen by algorithm

cumulative departure process fro@(7); D(1) = [D,(7)] at time 7.
denote the number of departures in time siofThen, o Attime 7 + 1, choosel ( + 1) as follows:
Q(t) = Q0)+ A(r) — D(1) = A(1) — D(7) - (F.ienerate a random independent Bét + 1) using
1)+ A(F) — D(7). 1 ANDOM.
Q= 1)+ 4(r) ™ @) — Obtain esimatesi;, wg of weights of I(7), R(7 +
Departure happens according to the scheduling algorithm 1) with respect toQ(r) respectively using ARX-
which need to satisfy interference constraint that no two CNT(g/8).
neighboring nodes are transmitting data in the same tinte slo — If wg > (ﬁgg) wr, then setl (7 + 1) = R(7 + 1).
To this end, letZ denote the set of all independent setcaf Else, setl (7 + 1) = I(7).

Then, at each time the scheduling algorithm schedules nodeg Repeat the above algorithm every time.
of an independent set € 7 to transmit packets. In what
follows, we will denote independent sétas vector] = [I,,]
with I, € {0,1} and I, = 1 indicates that node is in I.

We say that a system istable for given A\ under the
particular scheduling policy if

lim sup E[Q,(7)] < oo, VveVW. A RANDOM. _ .
T—00 The algorithm RNDOM is described as follows. The proof

From [2], it is clear that the set of al for which there exists of it satisfying propertyP1 can be found in [18].

a scheduling policy so that the system is stable is given aNDoMm

A = Co(Z), where Co(Z) is the convex hull ofZ in R™.

Hence, we callCo(Z) the throughput regiorof the system. o Each nodev € V' choosesl, = 0 or 1 with probability
In [2], it was shown that a ‘maximum weight independent  1/2 independently.

set’ scheduling algorithm is stable for all € Co(Z), where o If node v finds anyu € N(v) such thatl, = 1, it

the schedule or independent 9&{7) chosen at time- is immediately setd, = 0.
o Now, output! = [I,] as a sampled independent set.
I*(7) = argmax(l, Q(r — 1)),
S

will be called to provide 100% throughput or through optimal . . .
As discussed before, finding max. wt. independent set can-l.—he purpose qf algorithm |s.to cqmpute summation of node
be computationally hard. In the rest of the paper, we wi eights (approximately) for given independent set. A ukefu

be interested in designing scheduling algorithms that @g: property of this algorithm is that all nodes obtain the same
. ; . " estimate and hence allows for distributed decision ircA I.
stable, (b) induce low average queue-size (equivalenthly |

delay due to Little’s Law) and (c) simple and distributed. q\low, some useful probgblllst|c facts: ] _
F1. Let X;,..., X\ be independent random variables with

[1l. DISTRIBUTED STABLE ALGORITHM exponential distribution and parametess. . ., r;.. Then,
We describe a simple and distributed stable algorithm, X. = min1§igk X; has exponential distribution with
denoted by AGo |. The algorithm uses two distributed parameten ;" | 7;.

Before we establish that algorithm is stable (or throughput
optimal), we will describe the sub-routines\RDOM, APRX-
CNT and their properties useful in the analysis.

sub-routines, RNDOM and APRX-CNT, with the following F2. LetYi,...,Y,, be independent exponential random vari-
properties, explained later in this section: ables with parameter. Let S,, = % >t Y. Then, for
P1. RANDOM samples independent sets of graphin dis- v €(0,1/2)

tributed manner so that each independent set has get P -1 -1 2
. - r(Sm 1—~)r " (1L+y)r <2exp(—y*m/2).
sampled with probability at leas2—". It takes total ( #1-7) (1+7) ) p( vm/ )
O(|E| +n) < O(n?) distributed operations for angg.  The F1 is well-known about exponential distribution; tifr&
follows from Cramer's Theorem [19] about large deviation
“The model ignores multi-hop situation. However, as exgldirin [2], estimation for exponential distribution.

the scheduling algorithm remains maximum weight indepehdet with . . B .
weights being “difference of queue-sizes”. Similarly, e tcontext of resource Given an mdependent set = [Iv] and node Welghts

allocation as explained in [1], the weights are based ontdage multipliers”. W = [, ], F1 and F2 can be used to compute this weight



approximately as follows: each nodez V' draws an indepen-  As noted earlier, finding approximation to max. wt. inde-
dent exponential random variable with paramédiér (nodes pendent set is computationally hard. That is, there exisiphy
with W, = 0 or I, = 0 do not participate); then they computanstances for which finding such approximation will require
minimum, say X, of these random numbers in distributeégxponential time, unles® = NP. However, the question
fashion by iteratively asking their neighbors for theiriesttes is: are graphs arising in practice are of this type ? Next,
of minimum. Nodes should terminate this process afiér) we present algorithm for practical graphs modeled as non-
transmissions. Repeat this far times to obtain minimums expanding to obtain approximate max. wt. ind. set. schedule
X.(i),1 <i<m. . .
Now sets,, — % Z;L X.(i) and declareZ,, = 1/5,, as A. GRAPH-PARTITION and its properties
an estimate of weight of independent set, {E.V). Given a non-expanding graggh (with a metricD) ande >
Now, given small enougk it follows from F1, F2 that by 0, let L(e) > 3 be such that for any € V' andi < L(e),
selectingm = O(e~2n), we obtain estimate of weight of an

2/ € 2
independent set, say(/) such that 2(: : fi@) < 334 (loge—1)2 Fy(L(e)). &)
i<L(e
Pr(a(I) ¢ (1 —e)([,W),(1+e){I,W))) < 37".(2) | N(e) = max, F,(L(¢)) and define
Computation of a single minimum over the network can be B2loge!
done in a distributed manner in many ways. We skip the details po(e) = m- (4)

here in interest of space. However, we refer an interested ] N .
reader to see [20] for interesting account on such algosthnf "€ GRAPH-PARTITION algorithm that partitions graph in

The minimum computation takes totél(n2) exchanges or 900d clusters and boundary is described as follows.

O(n) per node. This provides properB?2. GRAPH-PARTITION

C. ALco|: stability and complexity (0) Eachv € V becomesluster-centerindependently with
Complexity. The algorithm AGo | uses two sub-routines, probability p,. -

RANDOM and APRX-CNT at every time-slot. Properties (1) If v becomes a center; sends notifying messages to
P1 and P2 imply that these two algorithms tak@(n?) and nodes W|t_h|n.d|st[anc®(e) w.rt. D. This can be imple-
O(n?) total (network-wide) operations for fixee. Thus, mented distributively by setting clock on message and

algorithm ALGo | performsO(n?) net operations to compute _ SPréading it around. o _
a schedule. The complexity burden can be reduced by makif@ A nodew takes decision as followsw is in boundary if

the algorithmlazy as follows: find schedule every time- either of the following is true:

steps and use the same schedule for in betweefl thgeps. (a) w does not receive message from any node at dis-
As long asT is finite, the algorithm remains stable and the tance< L(e) — 1.

average queue-size increases onlyly.T'). Thus, by choice (b) If w receives messages from two or more vertices,
of T = ©(n?), the same conclusion as in Theorem 1 can be say vy, ..., v SO thatD(vi, w) < D(viy1,w) with
obtained with amortized cost @#(1) operation per time-step. 1 <i<k—1,and|D(vy,w) — D(vg, w)| < 2.

(3) If none of (2)(a)-(2)(b) is satisfied thenis in the cluster

Stability. Now, throughput optimality of AGo l. of a nodev that is closet tow among all nodes from

Theorem 1 The algorithmALGo | based onRANDOM and which w has received a message.

APRX-CNT is stable as long as\ € (1 — €)Co(Z) for any

€ > 0. Further, The GRAPH-PARTITION algorithm has the following property
. n roved in [18]).
lim E[(Q(r). 1)] = O(6") ® 18D

T—00

Lemma 2 Under GRAPH-PARTITION , each nodev € V is
The proof can be found in [18]. in boundary setB with probability at most2e. Each cluster
is of size at mostV(e) and nodes that belong to different
clusters are not connected.

The ALco | shows that scheduling problems with hard )
constraint such as independent set can have extremelyesimpt AlgorithmALco Il
distributed and stable algorithms. TheL@o | essentially =~ Now, we present a randomized algorithm that essentially
finds independent set schedule whose average weight at &ingls an ind. set with average weight — €)W *(7) in total
time 7 is (1 — e)W*(r) — By, whereW*(r) is weight of O(n) message exchanges for amgn-expandingraph.
max. wt. independent set aigl, is some exponentially large The basic idea behind algorithm is as follows: given parti-
constant. The stability follows due to small multiplicaiv tion of nodes oflV by GRAPH-PARTITION into disjoint sets
approximation loss of —e, but the average queue-size suffers,..., Sk each of sizeO(1) and boundary seB so that
due to large constanB,. This suggests that we need arb; form connected components 6f (i.e. no two vertices in
algorithm that has average weight at lefst- £)W* (7). different.S;s are connected to each other), separated by nodes

IV. DISTRIBUTED STABLE ALGORITHM: LOWERDELAY



in B. We find exact max. wt. independent set, $ayrestricted operation done by RNDOM and APRX-CNT for each
to each ofS; using essentially AGo | multiple (constant) partition is constant (dependent d¥i(e)). Subsequently, the
times. Then, form an independent setlas UI’, i.e. set all total operations performed byuso Il is O(n) with constant

nodes inB to 0. The is a valid independent set i@. Now, dependent ot.

if sum of weights of nodes il is smallcompared the weight
of I, then! is a good approximation of max. wt. independe
set. This is guaranteed by Lemma 2.

ALGO I

(0) At each timer, algorithm performs steps (1)-(3).
(1) Givene > 0, partition the graph into®(n) clusters
S, ..

at mostN (e).

o each node knows whether it is in a cluster orBn
Each clustesS; do: fork =1,...,2.5Vi(e)
(o) Initially, setk =1 and I*(0) = 0 (i.e. empty set).
(a) Generate a random independent $&t(k) using
RANDOM.
Find weight estimate w (k),wi(k — 1)
Ri(k), I'(k — 1) using APRX-CNT(g/8).
SetIi(k) = Ri(k) if wh(k) > (}:jg) wi(k — 1);
elsel'(k) = I'(k — 1).
Setk = k + 1 and repeat (a)-(c) tilk = 2.5V:(e),
Whenk = 2.5V call I*(k) asI’(r) (with abuse
of notation).
Declare schedule at time, I(7) = UI‘(7), i.e. nodes
use their distributively learnt assignment.

(@)
[1]

2
of (2]

(3]

(4

(5]
(6]
(7]

3)

We state the main theorem about performance afcé
I whose proof depends on properties of R&PH-

PARTITION and APRX-CNT, which can be found in [18]. 8]

Theorem 3 Given non-expanding grapldz, the algorithm
ALGO Il is stable as long as\ € (1 — d(e))Co(Z) for any
small enougte > 0 and

lim E[(Q(7),1)]

T—00

El
[10]

_ [11]

O(n),

whered(e) = 4e(A +2). This average queue-size is order opr; 7]
timal, i.e. there exist3 € (1 —¢&)Co(Z) for non-expandingG

such that for any algorithm [13]

T—1

tim inf ~ 3 E[(Q(s), 1)
s=0

Q(n). (14]

Further, ALGO Il takesO(n) total operations with constant [15]
dependent om. [16]

C. ALco Il : Complexity, Stability and Delay

Complexity. The algorithm AGo Il uses QRAPH-
PARTITION, RANDOM and APRX-CNT. The algorithm
GRAPH-PARTITION takesO(n) distributed operations since[18]

[17]

tability and Delay. These properties are stated in Theorem

which essentially uses Lemma 4 (proved in [18]). LL&t)
be schedule chosen by L&o Il at time 7, and the max.
independent set bé*(7), i.e. [*(7) = argmax;ez{(Q(T
1),I(7)). Let W(r) = (Q(7 — 1),I(7)), and letW*(7)
(Q(r = 1),I"(7)).
»Sen, ® € (0,1) and boundary set3 using Lemma 4 For non-expanding grapld’ with maximum vertex
GRAPH-PARTITION. EachS; hasN;(e) nodes, which is degreeA, for any timer, E[W ()] > (1 — 0.56(¢))W*(7)

wit.

3

where expectation is with respect to randomness of the algo-
rithm GRAPH-PARTITION.
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