
Low Delay Scheduling in Wireless Network
Kyomin Jung

Mathematics, MIT
kmjung@mit.edu

Devavrat Shah
EECS, MIT

devavrat@mit.edu

Abstract— In a wireless network, a sophisticated algorithm is
required to schedule simultaneous wireless transmissionswhile
satisfying interference constraint that two neighboring nodes can
not transmit simultaneously. The scheduling algorithm need to be
excellent in performance while being simple and distributed1 so
as to be implementable. The result of Tassiulas and Ephremides
(1992) imply that the algorithm, scheduling transmissionsof
nodes in the ’maximum weight2 independent set’ (MWIS) of
network graph, is throughput optimal. However, algorithmically
the problem of finding MWIS is known to be NP-hard and
hard to approximate. This raises the following questions: is it
even possible to obtain throughput optimal simple, distributed
scheduling algorithm? if yes, is it possible to minimize delay of
such an algorithm?

Motivated by these questions, we first provide a distributed
throughput optimal algorithm for any network topology. How -
ever, this algorithm may induce exponentially large delay.To
overcome this, we present an order optimal delay algorithm
for any non-expanding3 network topology. Networks deployed
in geographic area, like wireless networks, are likely to beof
this type. Our algorithm is based on a novel distributed graph
partitioning scheme which may be of interest in its own right.
Our algorithm for non-expanding graph takes O(n) total message
exchanges orO(1) message exchanges per node to compute a
schedule.

I. I NTRODUCTION

Wireless networks are becoming architecture of choice in
ad-hoc networks and metro-area networks or mesh-networks.
The tasks of resource allocation and scheduling are essential
for good network utilization. Wireless medium being multi-
access makes algorithm design for such network intrinsically
different and more challenging than its wireline counter-
part. Further, wireless architecture requires that algorithm be
distributed and simple.

Despite these challenges, there has been an exciting recent
progress based on optimization frame-work to characterize
good resource allocation algorithm that combine resource
allocation and scheduling (see [1], for example). However,
these solutions either assume availability of good scheduling
algorithm or use of imperfect scheduling (which will lead to
poor performance). In this paper, we are interested in design-
ing simple to implement, distributed and high-performance
scheduling algorithms.

1In this paper, by distributed we mean that algorithm operating at nodes of
the network can only utilize local topological information.

2Weight is an appropriate function of queue-sizes and possibly other
network parameters.

3See section IV for precise definition of the non-expanding graph.

A. Scheduling in wireless network

We consider an abstract model of wireless network given
by graphG = (V, E) with |V | = n wireless nodes and edges
represented byE. We consider the classical interference model
for multi-access channel which imposes the constraint that
two neighboring nodes can not transmit simultaneously. Sub-
sequently, simultaneously transmitting nodes must correspond
to independent setof G. When nodes are given weights, the
weight of an independent set is the summation of weights of
nodes in the independent set.

Based on results of Tassiulas and Ephremides [2] and
optimization formulation of resource allocation, a through-
put optimal algorithm for resource allocation and scheduling
is equivalent to finding ‘maximum weight independent set’
(MWIS) in G every time, where weight is function of queue-
size and other network parameters. We refer interested readers
to a recent survey by Lin, Shroff and Srikant [1] where a
detailed account of this development is given for wireless
network withnode-exclusiveinterference model (aka matching
constraints).

B. Previous work

We present a brief summary of previous work on network
scheduling algorithms. The result by Tassiulas and Ephremides
[2] established that ‘max-weight scheduling’ policy is through-
put optimal for a large class of scheduling problems. This
result has been very influential in design of scheduling algo-
rithms since then. Application to input-queued switches led to
an excellent development of theory and practice of algorithms
for scheduling under matching constraints: notably, the results
of [3]–[9]. A recent interest in wireless network has led to
proposal of distributed scheduling algorithms under matching
constraints [10]–[13]. Most of these algorithms, based on
finding maximal matching, guarantee only a constant fraction
of throughput. Recently, Modiano, Shah and Zussman [14] ex-
hibited a throughput optimal distributed scheduling algorithm
with matching constraints. This algorithm, as discussed in[1],
easily extends to provide throughput optimal algorithm for
resource allocation and scheduling problem under matching
constraints.

Apart from matching constraints, other scheduling con-
straints have received limited attention primarily due to inher-
ent hardness of the other constraints. For example, Sharma,
Mazumdar and Shroff [15] identify that max-weight schedul-
ing with K−hop matching constraint becomes an instance
of computationally hard combinatorial optimization problem.

They provide a centralized throughput optimal algorithm for
unit disk graphs based on work by Hunt et. al. [16]. However,
hardness of the max. wt. problem does not imply non-existence
of throughput optimal algorithm. Specifically, in this paper we
provide throughput optimaldistributedalgorithm (ALGO I) for
hard independent set constraint (it will naturally extend to the
K-hop matching model of [15] as well).

C. Contribution

The maximum weight independent set (MWIS) algorithm
is throughput optimal for our setup. However, finding MWIS
is NP-hard [17] and hard to approximate withinn1−o(1)

(B/2O(
√

log B) for degreeB graph) factor [6]. This raises a
challenging question: is it even possible to have any through-
put optimal, polynomial (inn) time distributed algorithm? if
yes, how does it’s delay scale ? more generally, is it possible
to have both throughput and delay optimal polynomial time
distributed algorithm for practical network topology? As the
main contribution of this paper, we answer these tantalizing
questions in affirmative.

First, we exhibit a distributed throughput optimal scheduling
algorithm that takesO(n3) total operations to compute sched-
ule (section III). By computing schedule once inO(n3) time,
the cost per time isO(1). Such lazy schedule is throughput
optimal. That is, it is not difficult to have stable scheduling
algorithm even when scheduling constraints are very hard.
However, this algorithm is likely to induce exponentially large
(in n) delay. This suggests that the complexity of algorithm
trades off with delay rather than throughput.

Next, we present a delay (order) optimal scheduling algo-
rithm that essentially finds excellent approximation to MWIS
in O(n) operations in total orO(1) operations per node
for ‘practical networks’ modeled as non-expanding graphs
(section IV). The algorithm is distributed and simple. It is
based on a new randomized distributed graph partitioning with
certain properties. Next, we provide definition and examples
of non-expanding graph without making them mysterious for
reader till later in the paper4.
Non-expanding graphs.Given a graphG = (V, E), letD : V ×
V → R+ be a metric on nodes ofV . A special metric induced
by G is the shortest-path distance metric,DG : V ×V → R+

whereDG(u, v) is the length of shortest path connectingu, v
(∞ if u, v are not connected). With respect to a given metric
D (not necessarilyDG), for a given vertexv ∈ G and i ∈ N,
let fv(i) = |{w ∈ V : i − 1 < D(v, w) ≤ i}|, and Fv(i) =
|{w ∈ V : D(v, w) ≤ i}| =

∑i
j=1 fv(j).

Definition 1 A graphG is said to be “non-expanding” if there
exists a metricD : V × V → R+, constants∆, β such that
(0) (Contracting) D ≤ DG, i.e. D(u, v) ≤ DG(u, v),

∀ (u, v) ∈ V × V .
(1) (Bounded neighbors)Fv(1) ≤ ∆ for all v ∈ V .
(2) (Polynomial-growth)5 Fv(3i) ≤ βFv(i) ∀ i.

4Alternatively, reader may skip this definition and come backto it on
reaching section IV.

5The condition immediately implies thatFv(k) ≤ klog3 β . Hence the name
polynomial-growth.

(3) (Absence-of-thick-boundary)6 For anyε > 0, there exists
constantℓ(ε) such that





ℓ(ε)
∑

i=1

fv(i)
2



 ≤ εF 2
v (ℓ(ε)).

Example 1.Consider a
√

n × √
n grid graph ofn nodes in

two-dimension. Then, forD = DG it is non-expanding as we
havefv(i) = Θ(i) (with ℓ(ε) = O(1/ε)).
Example 2:Suppose there are infinitely many nodes placed in
a plane (or even three dimension) so that for someR > 0, (a)
nodes are connected to each other if they are within distance
R of each other, and (b) number of nodes in any disc of radius
αR is bounded above byγ and below by1 whereα ∈ (0, 1/2]
and γ ≥ 1 are constants. Now consider any square of side-
lengthN in plane. LetG be the graph formed by nodes within
this square. Then it is non-expanding as shown in the [18],
with respect to metricD = d/R whered is Euclidian distance.
Note that such a model captures the nature of wireless nodes
deployed in practice.
Remark: Finally, some remarks on our results: (a) We con-
sider the single-hop model. However, it should be clear to an
informed reader that exactly the same algorithms with different
weights will provide desiredoptimal performance: weights
being “difference of queue-sizes” under multi-hop model of
[2] and weights being appropriate Lagrange parameters for
resource allocation in multi-hop network as explained in [1].
(b) The independent set constraint is general enough abstract
model to capture any combinatorial scheduling constraint.
Thus, our results should extend to a large class of scheduling
problem. For example, a natural adaptation of ALGO I for
K-hop matching model will provide distributed throughput
optimal algorithm (thus, answering the question implicitly
raised in [15]). (c) We note conceptual similarity of ALGO

II with that of [16]. However, inherently the algorithm of
[16] is centralized (uses dynamic programing and centralized
graph partition) while ours is distributed.

II. N OTATIONS AND MODEL

As before, letG = (V, E) be the undirected network graph
with |V | = n. Let N (v) = {u ∈ V : (u, v) ∈ E} denote
the set of all neighbors ofv ∈ V . The time is assumed to
be slotted andτ ∈ Z+ denote the time. Each nodev ∈ V
is capable of wireless transmission at unit rate to any of its
neighbor. We ignore the power control for simplicity but as
reader may notice, it can be easily included in the model.
At each node, packets (of unit size) are arriving according
to an external arrival process. Let̄A(τ) = [Āv(τ)] denote
the cumulative arrival process until timeτ ∈ Z+, i.e. Āv(τ)
be the total number of packet arrived at nodev in the time
interval [0, τ]; Ā(τ) = 0. Let Av(τ) = Āv(τ)− Āv(τ − 1) be
the number of packets arriving at nodev in time slot τ . We
assume that at most one packet can arrive at a nodev in a

6The condition says that no ’boundary’ formed by nodes at a particular
distance should have most of the nodes till rangeℓ(ε).

time slot, i.e.Av(τ) ∈ {0, 1}. Finally, we assume thatAv(·)
are Bernoulli i.i.d. random variable withPr(Av(τ) = 1) = λv.
Let λ = [λv] denote the arrival rate vector.

For simplicity and ease of explanation, we assume that
network is a single-hop7, i.e. data arriving at a nodev is to be
sent to one of its neighbors. LetQv(τ) denote the queue-size at
nodev at timeτ with Q(τ) = [Qv(τ)]. We assume the system
starts empty, i.e.Q(0) = 0. Let D̄(τ) = [D̄v(τ)] denotes the
cumulative departure process fromQ(τ); D(τ) = [Dv(τ)]
denote the number of departures in time slotτ . Then,

Q(τ) = Q(0) + Ā(τ) − D̄(τ) = Ā(τ) − D̄(τ)

= Q(τ − 1) + A(τ) − D(τ). (1)

Departure happens according to the scheduling algorithm
which need to satisfy interference constraint that no two
neighboring nodes are transmitting data in the same time slot.
To this end, letI denote the set of all independent set ofG.
Then, at each time the scheduling algorithm schedules nodes
of an independent setI ∈ I to transmit packets. In what
follows, we will denote independent setI as vectorI = [Iv]
with Iv ∈ {0, 1} andIv = 1 indicates that nodev is in I.

We say that a system isstable for given λ under the
particular scheduling policy if

lim sup
τ→∞

E[Qv(τ)] < ∞, ∀ v ∈ V.

From [2], it is clear that the set of allλ for which there exists
a scheduling policy so that the system is stable is given by
Λ = Co(I), where Co(I) is the convex hull ofI in R

n.
Hence, we callCo(I) the throughput regionof the system.

In [2], it was shown that a ‘maximum weight independent
set’ scheduling algorithm is stable for allλ ∈ Co(I), where
the schedule or independent setI∗(τ) chosen at timeτ is

I∗(τ) = arg max
I∈I

〈I, Q(τ − 1)〉,

with notation that〈A, B〉 =
∑

v∈V AvBv. Such an algorithm
will be called to provide 100% throughput or through optimal.

As discussed before, finding max. wt. independent set can
be computationally hard. In the rest of the paper, we will
be interested in designing scheduling algorithms that are:(a)
stable, (b) induce low average queue-size (equivalently low
delay due to Little’s Law) and (c) simple and distributed.

III. D ISTRIBUTED STABLE ALGORITHM

We describe a simple and distributed stable algorithm,
denoted by ALGO I. The algorithm uses two distributed
sub-routines, RANDOM and APRX-CNT, with the following
properties, explained later in this section:
P1. RANDOM samples independent sets of graphG in dis-

tributed manner so that each independent set has get
sampled with probability at least2−n. It takes total
O(|E| + n) ≤ O(n2) distributed operations for anyG.

7The model ignores multi-hop situation. However, as explained in [2],
the scheduling algorithm remains maximum weight independent set with
weights being “difference of queue-sizes”. Similarly, in the context of resource
allocation as explained in [1], the weights are based on “Lagrange multipliers”.

P2. APRX-CNT(ε) takes given independent set and node
weightsW and produces an estimate ofwI = 〈I, W 〉,
sayŵ, so thatŵ ∈ ((1−ε)wI , (1+ε)wI) with probability
at least1− 3−n in total O(n3) distributed operations for
any G.

ALGO I

◦ Let I(τ) be independent set schedule chosen by algorithm
at timeτ .

◦ At time τ + 1, chooseI(τ + 1) as follows:

− Generate a random independent setR(τ + 1) using
RANDOM.

− Obtain esimateŝwI , ŵR of weights ofI(τ), R(τ +
1) with respect toQ(τ) respectively using APRX-
CNT(ε/8).

− If ŵR > (1+ε/8)
(1−ε/8) ŵI , then setI(τ + 1) = R(τ + 1).

Else, setI(τ + 1) = I(τ).

◦ Repeat the above algorithm every time.

Before we establish that algorithm is stable (or throughput
optimal), we will describe the sub-routines RANDOM, APRX-
CNT and their properties useful in the analysis.

A. RANDOM

The algorithm RANDOM is described as follows. The proof
of it satisfying propertyP1 can be found in [18].

RANDOM

◦ Each nodev ∈ V choosesIv = 0 or 1 with probability
1/2 independently.

◦ If node v finds anyu ∈ N (v) such thatIu = 1, it
immediately setsIv = 0.

◦ Now, outputI = [Iv] as a sampled independent set.

B. APRX-CNT and its properties

The purpose of algorithm is to compute summation of node
weights (approximately) for given independent set. A useful
property of this algorithm is that all nodes obtain the same
estimate and hence allows for distributed decision in ALGO I.
Now, some useful probabilistic facts:

F1. Let X1, . . . , Xk be independent random variables with
exponential distribution and parametersr1, . . . , rk. Then,
X∗ = min1≤i≤k Xi has exponential distribution with
parameter

∑k
i=1 ri.

F2. Let Y1, . . . , Ym be independent exponential random vari-
ables with parameterr. Let Sm = 1

m

∑m
i=1 Yi. Then, for

γ ∈ (0, 1/2)

Pr
(

Sm /∈ (1 − γ)r−1, (1 + γ)r−1
)

≤ 2 exp
(

−γ2m/2
)

.

The F1 is well-known about exponential distribution; theF2
follows from Cramer’s Theorem [19] about large deviation
estimation for exponential distribution.

Given an independent setI = [Iv] and node weights
W = [Wv], F1 and F2 can be used to compute this weight

approximately as follows: each nodev ∈ V draws an indepen-
dent exponential random variable with parameterWv (nodes
with Wv = 0 or Iv = 0 do not participate); then they compute
minimum, sayX∗ of these random numbers in distributed
fashion by iteratively asking their neighbors for their estimates
of minimum. Nodes should terminate this process afterΘ(n)
transmissions. Repeat this form times to obtain minimums
X∗(i), 1 ≤ i ≤ m.

Now setSm = 1
m

∑m
i=1 X∗(i) and declareZm = 1/Sm as

an estimate of weight of independent set, i.e.〈I, W 〉.
Now, given small enoughε it follows from F1, F2 that by

selectingm = O(ε−2n), we obtain estimate of weight of an
independent set, saŷw(I) such that

Pr (ŵ(I) /∈ ((1 − ε)〈I, W 〉, (1 + ε)〈I, W 〉)) ≤ 3−n. (2)

Computation of a single minimum over the network can be
done in a distributed manner in many ways. We skip the details
here in interest of space. However, we refer an interested
reader to see [20] for interesting account on such algorithms.
The minimum computation takes totalO(n2) exchanges or
O(n) per node. This provides propertyP2.

C. ALGO I : stability and complexity

Complexity. The algorithm ALGO I uses two sub-routines,
RANDOM and APRX-CNT at every time-slot. Properties
P1 and P2 imply that these two algorithms takeO(n2) and
O(n3) total (network-wide) operations for fixedε. Thus,
algorithm ALGO I performsO(n3) net operations to compute
a schedule. The complexity burden can be reduced by making
the algorithm lazy as follows: find schedule everyT time-
steps and use the same schedule for in between theT steps.
As long asT is finite, the algorithm remains stable and the
average queue-size increases only byO(nT). Thus, by choice
of T = Θ(n3), the same conclusion as in Theorem 1 can be
obtained with amortized cost ofO(1) operation per time-step.

Stability. Now, throughput optimality of ALGO I.

Theorem 1 The algorithmALGO I based onRANDOM and
APRX-CNT is stable as long asλ ∈ (1 − ε)Co(I) for any
ε > 0. Further,

lim
τ→∞

E[〈Q(τ),1〉] = O(6n).

The proof can be found in [18].

IV. D ISTRIBUTED STABLE ALGORITHM: LOWER DELAY

The ALGO I shows that scheduling problems with hard
constraint such as independent set can have extremely simple,
distributed and stable algorithms. The ALGO I essentially
finds independent set schedule whose average weight at any
time τ is (1 − ε)W ∗(τ) − Bn, whereW ∗(τ) is weight of
max. wt. independent set andBn is some exponentially large
constant. The stability follows due to small multiplicative
approximation loss of1−ε, but the average queue-size suffers
due to large constantBn. This suggests that we need an
algorithm that has average weight at least(1 − ε)W ∗(τ).

As noted earlier, finding approximation to max. wt. inde-
pendent set is computationally hard. That is, there exists graph
instances for which finding such approximation will require
exponential time, unlessP = NP . However, the question
is: are graphs arising in practice are of this type ? Next,
we present algorithm for practical graphs modeled as non-
expanding to obtain approximate max. wt. ind. set. schedule.

A. GRAPH-PARTITION and its properties

Given a non-expanding graphG (with a metricD) andε >
0, let L(ε) ≥ 3 be such that for anyv ∈ V and i ≤ L(ε),

∑

i≤L(ε)

f2
v (i) ≤ ε

3β4(log ε
−1)2

F 2
v (L(ε)). (3)

Let N(ε) = maxv Fv(L(ε)) and define

pv(ε) =
β2 log ε

−1

Fv(2L(ε))
. (4)

The GRAPH-PARTITION algorithm that partitions graph in
good clusters and boundary is described as follows.

GRAPH-PARTITION

(0) Eachv ∈ V becomescluster-centerindependently with
probabilitypv.

(1) If v becomes a center,v sends notifying messages to
nodes within distanceL(ε) w.r.t. D. This can be imple-
mented distributively by setting clock on message and
spreading it around.

(2) A nodew takes decision as follows.w is in boundary if
either of the following is true:

(a) w does not receive message from any node at dis-
tance≤ L(ε) − 1.

(b) If w receives messages from two or more vertices,
say v1, . . . , vk so thatD(vi, w) ≤ D(vi+1, w) with
1 ≤ i ≤ k − 1, and |D(v1, w) − D(v2, w)| ≤ 2.

(3) If none of (2)(a)-(2)(b) is satisfied thenw is in the cluster
of a nodev that is closet tow among all nodes from
which w has received a message.

The GRAPH-PARTITION algorithm has the following property
(proved in [18]).

Lemma 2 Under GRAPH-PARTITION , each nodev ∈ V is
in boundary setB with probability at most2ε. Each cluster
is of size at mostN(ε) and nodes that belong to different
clusters are not connected.

B. AlgorithmALGO II

Now, we present a randomized algorithm that essentially
finds an ind. set with average weight(1 − ε)W ∗(τ) in total
O(n) message exchanges for anynon-expandinggraph.

The basic idea behind algorithm is as follows: given parti-
tion of nodes ofV by GRAPH-PARTITION into disjoint sets
S1, . . . , SK each of sizeO(1) and boundary setB so that
Si form connected components ofG (i.e. no two vertices in
differentSis are connected to each other), separated by nodes

in B. We find exact max. wt. independent set, sayIi, restricted
to each ofSi using essentially ALGO I multiple (constant)
times. Then, form an independent set asI = ∪Ii, i.e. set all
nodes inB to 0. TheI is a valid independent set inG. Now,
if sum of weights of nodes inB is smallcompared the weight
of I, thenI is a good approximation of max. wt. independent
set. This is guaranteed by Lemma 2.

ALGO II

(0) At each timeτ , algorithm performs steps (1)-(3).
(1) Given ε > 0, partition the graph intoΘ(n) clusters

S1, . . . , Sφn, φ ∈ (0, 1) and boundary setB using
GRAPH-PARTITION. EachSi hasNi(ε) nodes, which is
at mostN(ε).
◦ each node knows whether it is in a cluster or inB.

(2) Each clusterSi do: for k = 1, . . . , 2.5Ni(ε)

(o) Initially, set k = 1 andIi(0) = 0 (i.e. empty set).
(a) Generate a random independent setRi(k) using

RANDOM.
(b) Find weight estimate wi

R(k), wi
I(k − 1) of

Ri(k), Ii(k − 1) using APRX-CNT(ε/8).

(c) Set Ii(k) = Ri(k) if wi
R(k) >

(

1+ε/8
1−ε/8

)

wi
I(k − 1);

elseIi(k) = Ii(k − 1).
(d) Set k = k + 1 and repeat (a)-(c) tillk = 2.5Ni(ε).

When k = 2.5Ni(ε) call Ii(k) as Ii(τ) (with abuse
of notation).

(3) Declare schedule at timeτ , I(τ) = ∪Ii(τ), i.e. nodes
use their distributively learnt assignment.

We state the main theorem about performance of ALGO

II whose proof depends on properties of GRAPH-
PARTITION and APRX-CNT, which can be found in [18].

Theorem 3 Given non-expanding graphG, the algorithm
ALGO II is stable as long asλ ∈ (1 − δ(ε))Co(I) for any
small enoughε > 0 and

lim
τ→∞

E[〈Q(τ),1〉] = O(n),

whereδ(ε) = 4ε(∆+2). This average queue-size is order op-
timal, i.e. there existsλ ∈ (1−ε)Co(I) for non-expandingG
such that for any algorithm

lim inf
τ→∞

1

τ

τ−1
∑

s=0

E[〈Q(s),1〉] = Ω(n).

Further, ALGO II takesO(n) total operations with constant
dependent onε.

C. ALGO II : Complexity, Stability and Delay

Complexity. The algorithm ALGO II uses GRAPH-
PARTITION, RANDOM and APRX-CNT. The algorithm
GRAPH-PARTITION takesO(n) distributed operations since
message generated by each node can traverse at most
O(N2(ε)) times. The ALGO II calls RANDOM and APRX-
CNT for O(2.5N(ε)) times for each of theΘ(n) partitions.
But since each partition is of size at mostN(ε), the net

operation done by RANDOM and APRX-CNT for each
partition is constant (dependent onN(ε)). Subsequently, the
total operations performed by ALGO II is O(n) with constant
dependent ofε.

Stability and Delay. These properties are stated in Theorem
3 which essentially uses Lemma 4 (proved in [18]). LetI(τ)
be schedule chosen by ALGO II at time τ , and the max. wt.
independent set beI∗(τ), i.e. I∗(τ) = arg maxI∈I〈Q(τ −
1), I(τ)〉. Let W (τ) = 〈Q(τ − 1), I(τ)〉, and letW ∗(τ) =
〈Q(τ − 1), I∗(τ)〉.
Lemma 4 For non-expanding graphG with maximum vertex
degree∆, for any timeτ , E[W (τ)] ≥ (1 − 0.5δ(ε))W ∗(τ),
where expectation is with respect to randomness of the algo-
rithm GRAPH-PARTITION.

REFERENCES

[1] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer
optimization in wireless networks,”Submitted, available through
csl.uiuc.edu/rsrikant, 2006.

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Transactions on Automatic Control,
vol. 37, pp. 1936–1948, 1992.

[3] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” inProceedings of IEEE Infocom,
1996, pp. 296–302.

[4] N. McKeown, “iSLIP: a scheduling algorithm for input-queued
switches,”IEEE Transaction on Networking, vol. 7, no. 2, pp. 188–201,
1999.

[5] J. Dai and B. Prabhakar, “The throughput of switches withand without
speed-up,” inProceedings of IEEE Infocom, 2000, pp. 556–564.

[6] L. Trevisan, “Non-approximability results for optimization problems on
bounded degree instances,” inACM STOC, 2001.

[7] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling
algorithms for high-aggregate bandwidth switches,” vol. 21, no. 4, 2003,
pp. 546–559.

[8] D. Shah, “Stable algorithms for input queued switches,”in Proceedings
of Allerton Conference on Communication, Control and Computing,
2001.

[9] D. Shah and D. J. Wischik, “Optimal scheduling algorithmfor input
queued switch,” inIEEE INFOCOM, 2006.

[10] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” IEEE
Trans. Inf. Theory, vol. 34, 1988.

[11] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” in43rd Allerton conference
on Comm. Control and computing, 2005.

[12] L. Chen, S. H. Low, M. Chang, and J. C. Doyle, “Optimal cross-layer
congestion control, routing and scheduling design in ad-hoc wireless
networks,” in IEEE INFOCOM, 2006.

[13] X. Lin and N. B. Shroff, “Impact of imperfect schedulingin wireless
networks,” in IEEE INFOCOM, 2005.

[14] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless network via gossiping,” inACM SIGMETRICS/Performance,
2006.

[15] G. Sharma, R. Mazumdar, and N. Shroff, “On the complexity of
scheduling in wireless networks,” inACM Mobicom, 2006.

[16] H. B. Hunt-III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns, “NC-approximation schemesfor NP-
and PSPACE-hard problems for geometric graphs,”J. Algorithms,
vol. 26, no. 2, pp. 238–274, 1998.

[17] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness.

[18] K. Jung and D. Shah, “Low delay scheduling in wireless network,”
Preprint, available at http://web.mit.edu/devavrat/www/delay.pdf.

[19] A. Dembo and O. Zeitouni,Large Deviations Techniques and Applica-
tions. Jones and Barlett Publishers, 2003.

[20] D. Mosk-Aoyama and D. Shah, “Computing separable functions via
gossip,” inACM PODC, 2006.

