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Abstract—Rate allocation is a fundamental problem in the
operation of a wireless network because of the necessity to
schedule the operation of mutually interfering links between
the nodes. Among the many reasons behind the importance
of efficiently determining the membership of an arbitrary rate
vector in the feasibility region, is its high relevance in optimal
cross layer design. A key feature in a wireless network is that links
without common nodes can also conflict (secondary interference
constraints). While the node exclusive model problem has efficient
algorithms [8], it has long been known that this is a hard problem
with these additional secondary constraints [1].

However, wireless networks are usually deployed in geographic
areas that do not span the most general class of all graphs
possible. This is the underlying theme of this paper, where
we provide algorithms for two restricted instances of wireless
network topologies. In the first tractable instance, we consider
nodes placed arbitrarily in a region such that (a) the node
density is bounded, and (b) a node can only transmit or interfere
with other nodes that are within a certain limited radius. We
obtain a simple (1 − ε) polynomial-time approximation scheme
for checking feasibility (for any ε > 0). The second instance
considers the membership problem of an arbitrary rate-vector
in the feasible set, where the nodes are distributed within a slab
of fixed width (there are no density assumptions). Specifically,
the results in [12] are shown to extend to a much more general
class of graphs, which we call the (dmin, dmax) class of graphs,
and this generalization is used to obtain a strongly polynomial
time algorithm that decides membership of a rate-vector where
the hosts are distributed within an infinite corridor with fixed
cross-section.

I. INTRODUCTION

Wireless networks are inherently different from wireline
networks due to the effects of interference: transmission
of a wireless node can adversely affect other simultaneous
transmissions among neighboring nodes. Interference is a
major reason why the link-rates in a wireless network are
not fixed independently – they are dependent on the other
transmissions. This makes the determination of link-rates that
can be allocated in a wireless networks a non-trivial problem.

A. Motivation

The problem of determining what link rates are feasible
in a wireless network is a very important question. Here we
present a motivating example from the perspective of cross-
layer design.

Scheduling link transmissions in a wireless network so as
to optimize one or more of the performance objectives (e.g.
throughput, delay, energy) has been a topic of much interest
over the past several decades. Tassiulas and Ephremides [19]
characterized the capacity region of packetized constrained
queueing systems, such as wireless networks, by means of a

queue-length based scheduling policy. Effectively, their result
implies that if a multi-hop wireless network is required to
serve data at a rate that is feasible1, then a queue-length
based maximum-weight policy will serve data while keeping
the backlog in the system finite. This work has led to many
exciting results ever since. However, there is no simple polyno-
mial time scheme that determines the feasibility of a potential
link-rate allocation.

Unlike wireline networks, in wireless networks the link
capacities change depending on the schedules. This means
that it is important to develop algorithms that operate across
layers: algorithms should perform the routing, scheduling and
power control in a joint manner. Motivated by this, there has
been a recent interest in developing cross-layer optimization
algorithms (see, for example [5], [13], [14], [19], [21]) for
wireless networks. On the other hand, the recent success of
congestion control in wireline networks has led researchers to
incorporate congestion control into cross-layer optimization.
[3], [11], [14], [17], [20], [22].

Most of the above joint cross-layer optimization problems
have been shown to exhibit a nice decoupling property (see,
for example [11], [21]). More precisely, a cross-layer optimiza-
tion problem can be decomposed into multiple sub-problems,
where each sub-problem corresponds to a single layer. The
layers couple with each other by means of appropriate dual
variables, which can be thought of as the congestion prices of
queue-lengths at the links in the network.

The crux of the above work is the following: the optimal
cross-layer algorithm corresponds to solving a global opti-
mization problem of the following form: given network G on
n nodes V and edge-set (links) E,

maximize
∑

e∈E

peλe

subject to λ = (λe) ∈ Λ,

where p = (pe) are coupling parameters and Λ is the set of
all feasible link-rate allocations.

Clearly, the above optimization problem requires an algo-
rithm to check the feasibility of a given link-rate allocation,
i.e. verifying whether given λ = (λe) ∈ Λ or λ /∈ Λ.

B. Our contributions

The only existing result so far on the rate feasibility
problem, to the best of our knowledge, is a negative result

1That is, there exists a scheme that can serve the data while keeping the
backlogs in the system finite under appropriate conditions on arrival processes.



of NP hardness. In this paper, we show that even though
this problem is NP-hard, there could be relevant subclasses
of the problem that arise in practice which can be tackled
efficiently. Specifically, first we give an approximation solution
to the problem of checking rate feasibility when the node
density is bounded (defined precisely in later sections). This
approximation algorithm is novel, and could be of independent
interest for membership testing on other convex sets. We
also show that the rate feasibility problem can be efficiently
solved when the nodes are restricted to a fixed width slab. For
instance, Intelligent Vehicle Highway Systems (IVHS) appli-
cations require communication between cars restricted to roads
- something that is topologically similar to the slab abstraction
where the width is fixed but the length can be unbounded.
Similarly, commercial air-routes are essentially “roads in the
sky” too. We also make certain practical assumptions on the
interference models which will be described in detail in the
following sections.

We organize the paper as follows: Section II describes
the problem setting, models and the restrictive assumptions.
Sections III and IV give details of the first and second results
respectively.

C. Related work

The problem of feasible rate allocation in the context
of node-exclusive interference model (matching model) has
been studied by Hajek and Sasaki [8]. This problem has
a polynomial time approximation scheme. The problem of
feasible rate allocation for the 2-matching, i.e. with additional
“secondary interference constraints”, was shown to be NP-hard
by Arikan [1]. To the best of our knowledge, this problem has
not been studied in other contexts.

There are, however, a large body of works on scheduling
in wireless network with interference constraints. In [2]–[4],
[8], [11], [14], [19] authors consider the matching based
scheduling problem. In [6], authors consider a closely related
problem of determining capacity in ad hoc wireless network
under secondary interference model (2-matching model) by
means of finding maximum size 2-matching in a Geometric
graph. Similar to the ideas of [6], authors in [16] consider
the problem of finding maximum weighted K-matching in a
geometric graph. While these approaches provide an almost
stable schedule for wireless packet scheduling, they do not
readily answer the question of feasibility of rate allocation to
links in wireless network. We note that the approaches of [6]
and [16] have been derived from that of [9]. In spirit, our
methods are similar. But we note that neither of the above
papers address question of rate feasibility, or equivalently
membership in a convex set. We also note a similarity of an
algorithm we propose here to the recent work [10] for finding
stable scheduling algorithms with independent set constraints.

II. MODEL AND RESULTS

A. Problem statement

A wireless network carrying a collection of single-hop,
constant-bit-rate (CBR) flows, can be represented as an undi-

rected graph G = (V,E), where V represents the set of nodes,
and E ⊆ V ×V is a symmetric2 relationship that represents the
set of bi-directional links. We assume all links of the network
have the same capacity, which is normalized to unity.

Interference among concurrent origin-to-destination com-
munications would place constraints on the set of links that can
be simultaneously active at any instant in time. Define primary
(node exclusive) interference constraints as the interference
caused by two links sharing a common node. The secondary
interference constraints impose additional restrictions – two
links (i, j) and (i′, j′) of E can not be active simultaneously
if (i, j′) ∈ E.

A collection of links can be represented using its appropriate
indicator vector, whose dimension is equal to the total number
of links in the network. The set of all possible indicator vectors
corresponding to collections of non-conflicting links in the
network can be assimilated to form a matrix T. The number
of columns of T will be exponential, in general.

A transmission schedule decides the set of non-conflicting
simultaneous transmissions permitted at each given time in-
stant. A single-hop rate-vector r is said to be feasible if there
is a transmission schedule that achieves the prescribed rates
for each link. The set of all feasible rate-vectors form the
single-hop capacity region of a wireless network. We concern
ourselves with the problem of deciding membership of an
arbitrary rate-vector in the single-hop capacity region of a
wireless network.

Let us suppose the MAC-layer of the wireless network uses
a variable slot length TDMA scheme. Following [1], a rate
vector λ belongs to the single-hop capacity region of a wireless
network if and only if there exists z ≤ 1, where

z = min 1T x
Tx = λ,

(1)

and T is a matrix whose columns represent collections of non-
conflicting links. Even though the membership of a rate vector
is expressible as an instance of a Linear Program (LP), since
the number of columns of T can be exponential in terms of the
links, it not guaranteed to have a tractable solution. The results
in [1], [15] show that this membership problem is NP-hard.

Remark 1: Let Λ denote the collection of all feasible rate
vectors, i.e. λ for which the equation (1) has a solution z ≤ 1.
We note the following radial property of the rate-region Λ:
The set Λ is convex. Especially, 0 ∈ Λ and if λ ∈ Λ, then for
any µ ∈ Rn

+ with µ ≤ λ (component-wise), we have µ ∈ Λ.

B. Summary of the restrictive models

We now clearly describe the network models for which we
attain our results on the rate feasibility problem.

1) Conditions for the first result: Consider a wireless
network of m nodes represented by V = {1, . . . , m} placed
in a 2-dimensional geographic region in an arbitrary manner
(not necessarily random) inside a

√
m × √m square of area

2That is, (i, j) ∈ E ⇔ (j, i) ∈ E.



m.3 Let E = {(i, j) : i can transmit to j} be set of directed
links between nodes indicating which nodes can communicate.
Let G = (V,E) be the directed graph capturing the network.
We assume that the wireless network satisfies the following
simple assumptions.

Assumption 1 (Bounded Transmission Radius): We
assume that there is an R > 0 such that no two nodes that
are at distance larger than R can establish a communication
link with each other4.

Assumption 2 (Bounded Density): Given node v ∈ V , let

B(v, R) = |{u ∈ V : u is at distance at most R from v}|.
We say that graph G has bounded density D > 0, if for all
v ∈ V

B(v, R)
R2

≤ D, and R2D = O(log m).

We note that the above assumptions are fairly mild, in
the sense that it is highly likely for any practically designed
wireless network to satisfy these assumptions.

Example 1: Consider a geometric random graph of n nodes
obtained by placing n nodes in the

√
n×√n square uniformly

at random and connecting any two nodes that are within
distance r = Θ(

√
log n) of each other. We denote this graph

by G(n, r). It is well known that G(n, r) is connected with
high probability for such an r ≥ rc = Θ(

√
log n). The proof

of the below lemma is not given here due to space constraints.
Lemma 2: The G(n, r) satisfies Assumptions 1-2 with high

probability.

2) Conditions for the second result: The model of commu-
nication for our second result further distinguishes a commu-
nication radius rc, and an interference radius ri, with ri > rc.

Definition 1: Communication radius: Two nodes can estab-
lish a communication link if and only if they are separated by
a distance less than the communication radius, rc.

Definition 2: Interference radius: Two nodes have an inter-
fering link if and only if they are separated by a distance less
than the interference radius, ri.

The assumption that ri > rc is a very justifiable assumption
and is routinely used in wireless literature. (e.g. [7])

pi

rc

ri

pj

pk

Fig. 1. An illustration of the communication radius and the interference
radius. Nodes pi and pj (pk) can communicate (interfere) with each other.

3Our algorithm actually works for arbitrarily placed nodes in the plane, but
we consider the square just for presentation.

4this does not imply that nodes within distance R must communicate.

In figure 1, the broken line indicates an interference link,
while the solid line denotes a communication link. Given an
arrangement of points, this implicitly specifies the sets of all
non-conflicting links according to the interference constraints.
In other words, the secondary interference constraint with this
distinction is that communication links (i, j) and (i′, j′) inter-
fere a) if i, j, i′, j′ are not all distinct, or b) if i, j, i′, j′ distinct
but (i, i′) is a potential interference link, i.e. d(i, i′) < ri.

There are no assumptions of density for the second result.
However, we place the nodes in R2 restricted to an area whose
width is fixed (does not grow with the number of nodes).

III. FIRST RESULT

For ease of exposition, we will transform the link based rate
feasibility problem with a total of n links (on m nodes) into
a naturally suggested equivalent node based rate feasibility
problem on n nodes where independent sets form the set of
all the feasible simultaneous transmissions. The assumptions
stated will transform equivalently. A precise justification for
this has been relegated to section III-C as lemma 5 to prevent
sidetracking of the discussion.

We will now proceed to presenting our main algorithm for
the above node based rate feasibility setting in Section III-A
in detail.

A. Algorithm: Node based rate feasibility
In this section, we will present a polynomial in n time

approximation algorithm for checking feasibility of a node-
based rate vector (of length n). Given ε > 0 and node-based
rate vector λ,

1. If λ ∈ (1 − ε)Λ, the algorithm outputs YES and a time
division such that

λ ≤
K(n)∑

k=1

αkIk,

with αk ≥ 0,
∑

k αk ≤ 1 and K(n) = poly(n).
2. If λ /∈ (1− ε)−1Λ, the algorithm outputs NO.
3. Otherwise (i.e. iff λ falls in the “ε-boundary” that was

not covered in 1. or 2.), the answer can be ANYTHING.
1) An intuitive description of the Algorithm: Figure 2

shows nodes placed in a square in arbitrary manner. Suppose
R > 0 is an upper bound on the distance between two nodes
that can establish a communication link as in Assumption 1,
and that the node placement satisfies the Assumption 2 with
density bound being O(log n). We now present an intuitive
description of the algorithm through the illustration shown in
figure 3.

The algorithm involves multiple iterations of the following
procedure. In each iteration, the plane is partitioned into a
union of disjoint rectangles and a uniform-randomly posi-
tioned rigid grid-like boundary region whose thickness is R.
This implies that nodes across distinct rectangles will always
remain disconnected and hence union of independent sets
from each rectangle will remain an independent set. The rate
feasibility problem is then independently solved for each rect-
angular area using an exhaustive search. Because of the density



assumptions and the nature of the partition, the size of each
of the subproblems will be O(log n) making the exhaustive
search for each subproblem polynomial in n. Failure of rate
feasibility in a subgraph clearly implies infeasibility as our
answer. If not, we get feasible schedules from each rectangle
which can then be merged in a natural way to get a global
schedule. This global schedule in each iteration will satisfy
the rate feasibility on all nodes except for those that fall in the
boundary region. However, if we ensure that each node has
a small probability of falling in the boundary region at any
given iteration, in a sufficiently large number of independent
iterations each node will fall into the boundary for a small
fraction of times with high probability. Hence an averaged
schedule over all these iterations will be a close estimate to
λ, the query rate vector.

Fig. 2. We consider wireless communication in a Euclidean plane. Nodes
are placed in an arbitrary manner such that at each point of the plane, node
density is bounded by O(log n). And there is a constant radius r, so that two
nodes can communicate and interfere each other only if the distance between
them is less than r.

Fig. 3. Our algorithm for checking feasibility randomly defines the cross-
road shaped regions indicated above in grey. In each of the components of the
non-boundary (white) regions, the rate feasibility is checked using a standard
linear programming formulation. This can be accomplished in polynomial
time as each component has O(log n) nodes. The results from the various
components are merged to obtain a time-division scheme for the entire graph.
The confidence of the procedure can be improved by appropriate repetition
of the above procedure.

2) Algorithm: We now present the precise details and the
pseudo-code for the algorithm. In the pseudo-code below, LP
is the subroutine used for computing an exhaustive solution
to the rate feasibility problem on the rectangles created by
the random partition. MERGE is the subroutine that takes
schedules over distinct rectangles and merges them to create
our global schedule Algorithm FC (Feasibility Check) which

seeks to determine the feasibility of the node-based rate vector
λ.

Procedure FC (λ)

(1) Let K(ε) = 4eR
ε and L(ε) = 3 log n

ε .
(2) Algorithm runs for L(ε) iterations. Begin with iteration

` = 0.
(3) For ` ≤ L(ε), do the following:

(a) Choose two numbers a and b uniformly at random
from [0, K(ε)].

(b) Obtain boundaries:
(i) Given a and b, a point (x, y) in the square is said

to be a boundary point if x ∈ [a + jK(ε), a +
R + jK(ε)] or y ∈ [b + jK(ε), b + R + jK(ε)]
for some j ∈ Z.

(ii) Let B be the set of all such boundary points.
(c) Obtain partition:

(i) Obtain sub-graph G′ from G by removing all the
edges that have an end vertex in B.

(ii) This creates a partition of graph G′ into dis-
connected components S1, . . . , Sm for some m.
The components are such that no two nodes in
the same component are at distance more than√

2K. Under assumptions 1-2, each component
has O(log n) nodes.

(d) Obtain an estimate:
(i) For each component Si, 1 ≤ i ≤ m, execute

LP to check the feasibility of λ restricted to the
nodes of Si.

(ii) If on any component, algorithm LP returns not
feasible, then declare NOT FEASIBLE and stop.

(iii) Else, obtain the decomposition of λ restricted to
each component Si. Say this is given by the vector
((αi

k, Ii
k)k) of polynomial in n length, where αi

k’s
are real numbers and Ii

k’s are independent sets of
Si. That is, let λi be restriction of λ to nodes of
Si. Then

λi ≤
∑

k

αi
kIi

k, such that
∑

k

αi
k ≤ 1.

(iv) Merge the ((αi
k, Ii

k))1≤i≤m according to a proce-
dure MERGE to obtain (βk, Ik)k such that Ik are
independent sets of G and βk ≥ 0,

∑
k βk ≤ 1.

Denote T (`) as this decomposition of `th iteration
(βk, Ik)k.

(e) Set ` = ` + 1 and repeat.
(4) Declare the final estimate of decomposition of λ as T̂

which is obtained by the following longer normalized
vector (

1
L(ε)

T (`)
)

1≤`≤L(ε)

.

Note that in each iteration of FC , any two nodes of G that
are in different components of G′ do not share an edge of G.
So the subset of nodes of G obtained by merging independent
sets for each component of G′ is an independent set of G.



3) Subroutine MERGE: The following is a pseudo-code for
the sub-routine MERGE that is used in FC to obtain convex
combination of independent sets for the whole graph G from
those of each component of G′.

MERGE

(1) Given ((αi
k, Ii

k))1≤i≤m,1≤k≤ki
, for each 1 ≤ i ≤ m and

0 ≤ j ≤ ki, let γi
j =

∑j
k=1 αi

k (let γi
0 = 0). Let Ui =

{γi
0, γ

i
1, γ

i
2 . . . , γi

ki
}, and U =

⋃
i Ui. Let 0 = β0 < β1 <

β2 < . . . < β` be the elements of U .
(2) For each i and j such that 1 ≤ i ≤ m and 1 ≤ j ≤ `, let

j(i) be the (unique) index such that γi
j(i)−1 ≤ βj−1 <

βj ≤ γi
j(i), and let Ij =

⋃
i Ii

j(i).
(3) Output T = (β1, I1, β2 − β1, I2, β3 − β2, I3, . . . , β` −

β`−1, I`).

Note that `, the number of independent sets in the output
of MERGE satisfies ` ≤ ∑m

i=1 ki. Since m ≤ n, if each ki

is polynomial in n, then so is `.
4) Subroutine LP : In Algorithm FC , we used the fol-

lowing sub-routine LP to check the feasibility of λ restricted
to each component in the graph partition. Algorithm LP runs
on a given graph G0 with m nodes and LP takes λ0, a rate
vector on G0 as its input.

LP

(1) Obtain all the possible independent sets of G0. Let
I1, . . . , IQ be those independent sets. Note that the num-
ber of independent sets Q ≤ 2m, where m is number of
nodes of G0.

(2) Solve the following Linear Program :
Q∑

i=1

xi = 1, sub. to. λ0 ≤
∑

i

xiIi.

(3) If the above Linear Program has a solution, return
(I1, x1, I2, x2, . . . , IQ, xQ) = (xi, Ii)1≤i≤Q.

(4) Else, return NOT FEASIBLE.

B. Analysis

1) Correctness: We state the following theorem about the
correctness of FC .

Theorem 3: Given a graph G that satisfies Assumptions 1-2
and an arbitrary ε > 0, the algorithm FC has the following
properties:

(1) If λ ∈ Λ, then w.h.p. FC outputs a feasible time division
scheme T̂ = (αk, Ik)k≤M with M = poly(n),

(1− ε)λ ≤
∑

k

αkIk,

such that
∑

k αk ≤ 1, αk ≥ 0.
(2) If λ /∈ (1 − ε)−1Λ, then with high probability,

FC outputs NOT FEASIBLE.
Proof:

We begin by proving property (1). Fix a node v of graph G.
Recall that L(ε) = 3 log n

ε is the number of iterations of FC .

Let Xi be the indicator random variable for the event that v
is in boundary in the ith iteration of FC . Let X =

∑
i Xi.

Then
E[Xi] ≤ 2R

K(ε)
=

ε

2e

and hence
E[X] ≤ εL(ε)

2e
.

Note that X is Binomial random variable since Xi’s are
independent and identically distributed. Hence by standard
application of Chernoff bound, we obtain

P[X > εL(ε)] < 2−εL(ε) =
1
n3

.

Now using the union bound over all the nodes, the prob-
ability that all nodes of G will be in the boundary at most
εL(ε) times during the L(ε) iterations is at least 1 − 1

n2 .
Since λ ∈ Λ(G), for each connected component of G′, there
is at least one solution to the linear programming in LP .
So the algorithm FC will output an estimate T̂ and never
output NOT FEASIBLE. Since the output T̂ of FC is the
average of the decompositions of L(ε) many iterations and
each node is not a part of the boundary for at least 1 − ε
fraction of iterations, we have (1− ε)λ ≤ λ(T ). Now, to see
that M = poly(n), note that due to the fact that M is upper
bounded by the summation of the number of independent
sets of the output of LP for each connected component, we
only need to show that the number of independent sets of
the output of LP for each component is polynomial over n.
Under the Assumptions 1-2, for any ε > 0, each component
has O(K2(ε)D) = O(R2D

ε2 ) = O(log n) nodes. Hence, the
number of independent sets in each component is polynomial
over n, and which shows that M = poly(n).

Now, we present proof of part (2) as follows: Suppose that
(1 − ε)λ /∈ Λ. As established above, the probability that all
of the nodes of G will be in the boundary at most εL(ε)
times during the L(ε) iterations of FC with probability at
least 1− 1

n2 .

Now suppose property (2) does not hold. That is, for λ /∈
(1− ε)−1Λ, algorithm FC does not output NOT FEASIBLE.
That is, algorithm FC returns decomposition T̂ of FC . But as
we argued above, since each node is not part of the boundary
at least (1 − ε) fraction of the time, it must be the case that
(1−ε)λ ≤ λ(T ). Since λ(T ) ∈ Λ, we have by radial property
of Λ as established in remark 1, (1− ε)λ ∈ Λ. This leads to a
contradiction of our assumption. That is algorithm FC must
generate NOT FEASIBLE for λ /∈ (1−ε)−1Λ with probability
at least 1− 1

n2 . This completes the proof of Property (2) and
that of Theorem 3.

2) Time complexity: In this section, we establish that the
running time of algorithm FC is poly(n).

Theorem 4: Given a wireless graph G satisfying Assump-
tions 1-2 with transmission radius R and density bound D,



the running time of FC is

O


n log n2O

(
R2D

ε2

)

ε


 .

Under Assumption 2, we have R2D = O(log n). In that case,
the running time of FC is poly(n). When R2D = O(1) the
running time of FC is O(n log n).

Proof: The algorithm FC partitions the graph into dis-
joint components, then the LP is executed on each component
followed by procedure MERGE on the schedules computed in
each iteration. We compute the complexity of each of these
three different sub-routines.

The partition requires a random selection of a and b. Then,
each node has to check whether to retain an edge or not.
This requires each node to perform a number of operations
proportional to its degree which is O(R2D). Since there are
n nodes, the total number of operations is O(nR2D).

Each component has O
(
K2(ε)D

)
= O

(
R2D
ε2

)
nodes.

Hence, the number of independent sets in each component
can be at most 2O( R2D

ε2 ). Hence, the LP for each component
takes 2O( R2D

ε2 ) time by standard Ellipsoid algorithm for linear
programming, and the total running time of the LP in one
iteration of FC is O

(
n2O( R2D

ε2 )
)

. It can be easily verified

that the MERGE procedure takes O
(
n2O( R2D

ε2 )
)

time. Note

that the size of merged output of FC is also O
(
n2O( R2D

ε2 )
)

.
Thus, over a total of O(log n/ε) iterations, we find that the

running time of FC is O

(
n log n2

O( R2D
ε2 )

ε

)
.

C. Algorithm: K-Matching interference Model

In this section, we justify the application of our algorithm
to graphs satisfying assumptions 1-2 under K-matching inter-
ference constraints for a general K. For this, we show that on
a graph satisfying assumptions 1-2, the problem of checking
link rate feasibility under the 2-matching model is equivalent
(by means of a polynomial time reduction) to checking node-
based rate feasibility in a graph satisfying Assumptions 1-2
with independent set scheduling. The same reduction can then
be extended for any K-matching problem for K > 2.

To this end, let nodes be placed in the square as before with
graph G = (V, E) satisfying assumptions 1-2. We construct
a new graph, Ĝ called the adjoint graph as follows: Ĝ has a
vertex corresponding to each edge in E. Let V̂ denote this set.
For edge (i, j) ∈ E, imagine that the vertex in V̂ is placed
at the position of i in the square (more than one vertex is
allowed to be placed at the same position). Place an edge
between two vertices of V̂ if the corresponding edges had a
conflict of simultaneous transmissions under the 2-matching
model. Ĝ is undirected since conflict relations between the
links are symmetric by definition. Note that by definition of
Ĝ, the interference constraints in G are now independent set
constraints in Ĝ giving us a node based rate feasibility problem

on Ĝ. Now, we can use the algorithm FC on this interference
graph. The above construction of interference graph takes at
most O(nR2D) = O(n log n) operations.

Lemma 5: Under assumptions 1 and 2 on G, the adjoint
graph Ĝ under 2-matching model also satisfies the Assump-
tions 1 and 2 with a different R̂ = O(R).

Proof: (outline) First, we note that Assumption 1 is
satisfied on Ĝ corresponding to an R̂ = 4R when Assumption
1 holds for G.

As for Assumption 2, first note that the nodes of V̂ that
are separated by more than 4R are disconnected. Since these
nodes correspond to end points of edges, by using the fact that
any area of O(R2) can be covered by O(1) discs of radius R,
and the Assumption 1 for original graph G implies that the
desired property holds.

Similar construction can be performed for any K-matching
problem for finite K > 2.

IV. SECOND RESULT

The second result critically uses the results of Matsui [12]
on fractional coloring of unit disk graphs in a fixed width slab.
However, this also involves, what could be of independent in-
terest, a necessary non trivial generalization of the applicability
of the algorithms of [12] to a more general class of graphs that
we will define. This makes it possible to apply this generalized
form of Matsui’s results to wireless networks. The conditions
and the model on the wireless network for the second result
have already been precisely specified in II-B2. We maintain
the notation used in [12] here. Next, we start off giving a brief
overview.

A. Intuitive summary

First, we note that the fractional coloring problem on a
graph is analogous to the node based rate feasibility problem
that corresponds to asking for an equal rate at each node.
Matsui’s algorithms solve the fractional coloring problem on
unit disk graphs for nodes in a fixed width slab. Our first
observation is to note that this procedure can be generalized
for any given asking rate - which is precisely the node-based
rate feasibility problem.

Now, although our link-based rate feasibility problem can be
naturally transformed to a node-based rate feasibility problem
on its adjoint graph, this adjoint graph clearly needs to
be a unit disk graph to apply Matsui’s algorithm. For this,
the adjoint needs to be produced as a graph with locations
specified for its nodes (the original links) in the plane. If
this is done, for instance, by assigning each link its midpoint,
no assumptions on the original wireless network graph might
actually produce an adjoint that can be shown to be isomorphic
to a unit disk graph. The reason for this is that we can easily
have a situation for the secondary interference model where
two links conflict while some other pair of links that are
actually “closer” do not conflict.

This is where the second observation on the results of
Matsui becomes crucial. Rather than trying to find an adjoint
that fits into the unit disk model, we note that the results for



unit disk graphs in fact can be generalized to a class of graphs
that we call the (dmin, dmax) graphs. These are graphs that
satisfy the property for two appropriate constants dmin and
dmax that: (1) two nodes must be connected if separated by
less than dmin and (2) two nodes must be disconnected if
separated by more than dmax. In other words, the observation
amounts to the fact that all we need for Matsui’s algorithm to
work is that nodes that are too close must have an edge while
those that are too far can not have an edge (while not caring
about what happens between dmin and dmax). Thus, we do
not necessarily need the unit disk graph structure which is
much more stringent, and in fact, fails for the adjoints we can
define later on.

Once this generalization is shown, we define an adjoint
easily and show that it is a (dmin, dmax) graph for dmin and
dmax which depend on the interference and communication
radii rI and rC . This implies that the generalized form of
Matsui’s algorithm on the (dmin, dmax) graphs can be used
to solve the rate feasibility problem for a wireless network
constrained to a fixed-width slab. We now begin with a brief
review of fractional coloring on unit disk graphs [12].

B. Unit Disk Graphs on Fixed-Width Slabs

The unit disk graph defined by a point-set P ⊆ R2,
is an undirected graph G(P ) = (P,E), where E ⊆ P × P ,
and (p1,p2) ∈ E ⇔ ‖p1−p2‖2 ≤ 1, where ‖ • ‖2 represents
the 2-norm of the vector argument. The unit sphere graph
induced by a point-set P ⊆ R3 in three dimensions can be
defined similarly.

Using a lexicographic ordering of the vertex set V , each
independent set of G = (V, E) can be represented by a |V |-
dimensional indicator vector, whose i-th entry is set to unity if
and only if the vertex vi belongs to the independent set. The
indicator vectors of all the independent sets of a graph can be
assimilated to form a matrix M. Following [12], the fractional
coloring problem is defined as

z = min 1T x
Mx ≥ 1
x ≥ 0

(2)

Since there can be a large number of columns in M, the above
LP does not yield a tractable solution in the general case.
[12] contains a polynomial time algorithm for the fractional
coloring of unit disk graphs whose vertices lie in a fixed width
slab Sk = {(x, y) ∈ R2 | 0 ≤ y ≤ k}. We now present the
relevant details of this procedure.

Let P̂ ⊆ P be a subset of the point-set P that defines the
vertices of a unit disk graph, we define

min{P̂} := min{bxc | (x, y) ∈ P̂}
and

B(P ) := {P̂ ⊆ P | P̂ is an independent set of G(P )

and ∀(x, y) ∈ P̂ , bxc = min{P̂}}
Given a point-set P ⊆ R2, and its associated unit disk graph

G(P ), its auxiliary graph A(P ) is a directed graph with
{s, t}∪B(P ) as its vertex set, while the directed set of edges
are given by

{(s, P̂ ) | ∀P̂ ∈ B(P )} ∪ {(P̂ , t) | ∀P̂ ∈ B(P )}∪
{(P̂ , P̃ ) ∈ B(P )× B(P ) | min{P̂} < min{P̃},

and P̂ ∪ P̃ is an independent set of G(P ).}
There is a one-to-one correspondence between the family of

independent sets in G(P ) and the set of (s−t)-paths in A(P ).
The maximum independent set corresponds to the longest (s−
t)-path in A(P ). When the point-set P ⊆ Sk, where Sk =
{(x, y) ∈ R2 | 0 ≤ y ≤ k} represents a slab of width k, is is
shown in reference [12] that |B(P )| = O(n2d 2k√

3
e) where n =

|P |. The same reference also presents a procedure by which
the longest (s− t)-path in A(P ) can be found in O(n4d 2k√

3
e)

time. The fractional coloring problem in equation 2 reduces to
the following flow-problem on A(P ), where x is a vector of
variables indexed by the set of arcs in A(P ), δ+(v) (δ−(v))
is the set of arcs entering (leaving) the vertex v in A(P ),

min
∑

e∈δ+(s) xe

subject to:∑
e∈δ+(v) xe −

∑
f∈δ−(v) xf = 0, ∀v ∈ B(P )∑

v∈{P̂∈B(P )|p∈P̂}
∑

e∈δ+(v) xe ≥ 1,∀p ∈ P

x ≥ 0.

(3)

The above flow-problem can be solved in strongly polynomial
time with respect to |B(P )| ( [18]). The optimal flow can then
be decomposed into non-negative combinations of (s − t)-
paths in A(P ). Each (s− t)-path in A(P ), which corresponds
to an independent set of G(P ), identifies a column in the M
matrix in equation 2, and the solution to the fractional coloring
problem for unit disk graphs whose point-set vertices lie in a
slab of fixed width k can be identified in strong polynomial
time.

C. Generalizing unit disk graph results to a larger class

We first show that the results on the fractional coloring
problem in [12] can be extended to a more general class of
graphs G(P ) = (P, E) induced by point sets P ⊆ {(x, y) ∈
R2 | 0 ≤ y ≤ k}.

Definition 3: Let us define a (dmin, dmax) graph as any
graph that can be induced by a point set P ⊆ {(x, y) ∈ R2

that satisfies the following two properties for strictly positive
finite constants dmin and dmax:

1) Property P1:

∀p1,p2 ∈ P, ‖p1 − p2‖ ≥ dmax ⇒ (p1,p2) /∈ E (4)

2) Property P2:

‖p1 − p2‖ < dmin ⇒ (p1,p2) ∈ E (5)

That is, there is an (no) edge connecting two points p1 and
p2 in G(P ) separated by a distance less than (larger than) or
equal to dmin (dmax). There might, or, might not be an edge
between two points whose distance of separation is between
dmin and dmax, however. We note the class of unit disk graphs



for which the results in [12] have been shown is equivalent
to setting a dmax = dmin in the above more general model.
The intuitive idea is that the necessity for properties 1 and
2 occurs independently and hence we would still be able to
solve the problem even for two different constants in the two
properties.

Theorem 6: The results in [12] hold for the class of
(dmin, dmax) graphs.

Proof: (outline) The extensions to the various arguments
stated earlier on unit disk graphs require the following defini-
tions. If P̂ ⊆ P , then

min{P̂} := min
{⌊

x

dmax

⌋}

and

B(P ) := {P̂ ⊆ P | P̂ is an independent set of G(P ),

and ∀(x, y) ∈ P̂ ,

⌊
x

dmax

⌋
= min{P̂}}

The definition of the auxiliary graph A(P ) is similar to the
one in [12]. That is, it is a directed graph with a vertex set
{s, t} ∪ B(P ), and the directed set of edges are given by

{(s, P̂ ) | ∀P̂ ∈ B(P )} ∪ {(P̂ , t) | ∀P̂ ∈ B(P )} ∪
{(P̂ , P̃ ) ∈ B(P )× B(P ) | min{P̂} < min{P̃}, (6)

and P̂ ∪ P̃ is an independent set of G(P ).} (7)

First, we verify that the directed graph A(P ) is transitive.
Transitivity is necessary to ensure a one to one correspondence
between the independent sets in the original graph to the paths
in the auxiliary graph. To see how transitivity continues to
hold, note that if (P̂1, P̂2) and (P̂2, P̂3) (P̂i ⊆ P, i = 1, 2, 3)
are directed edges in A(P ) , then min{P̂1} < min{P̂3}.
Since the distance between members of P̂1 and P̂3 is at
least dmax, and P̂1 and P̂3 are independent sets of G(P ),
it follows that P̂1 ∪ P̂3 is an independent set of G(P ). The
transitivity property involving vertices {s, t} follows directly
from the definition of the edge set of A(P ). That is, if
(s, P̂1) ((P̂1, P̂2), (s, P̂1), respectively) and (P̂1, P̂3) ((P̂2, t),
(P̂1, t), respectively) are directed edges of A(P ), then (s, P̂3)
((P̂1, t), (s, t), respectively) is also a directed edge of A(P ).

Thus far, we only know that the flow problem is solvable in
time polynomial only with respect to |B(P )|. To show that
|B(P )| is polynomial in |P |, we can upper bound |B(P )|
as O(|P |α) where α is any upper bound for the size of an
‘independent block’ (a set belonging to B(P )). Paralleling
lemma 2 [12] we note that the region [0, dmax) × [0, k) can
be covered using d2dmax/dmined2k/

√
3dminecopies of the

rectangle, {(x, y)|0 ≤ y ≤ √
3dmin/2, 0 ≤ x ≤ dmin/2}.

Since each rectangle has a diagonal of length dmin, an
independent block will have at most one point from each
such rectangle and hence we have a constant upper bound,
d2dmax/dmined2k/

√
3dmine on α.

D. Rate feasibility problem on constrained wireless networks

We now address the problem of deciding membership in
the capacity region of a planar wireless network whose nodes
lie on a slab of width k. Suppose the point-set P ⊂ {(x, y) ∈
R2 | 0 ≤ y ≤ k} represents the location of |P | = n nodes
of a wireless network, with the secondary interference model
corresponding to radii of communication and interference, rc

and ri as described previously. The link between p1 and
p2 can be assigned two orientations – (p1,p2) (p2,p1),
representing the situation where p1 (p2) is the origin node and
p2 (p1) is the destination node. With an intention of defining
an adjoint graph whose nodes correspond to directed edges
in G(P ), we locate two members of the adjoint point-set,
denoted by (p1,p2) and (p2,p1), at the mid-point between
p1 and p2. This process is repeated for all communicating
pairs in P . There is an edge between two vertices (pi,pj) and
(pk,pl) in the adjoint graph if and only if the communication
between source pi and destination pj interferes with that
between source pk and destination pl. Let Ĝ(P ) = (Q, Ê)
denote the adjoint graph. We now show that Ĝ(P ) fits into
the general model corresponding to properties P1 (equation 4)
and P2 (equation 5).

Observation 7: For the adjoint graph Ĝ(P ) described
above, there cannot be an edge between vertices (pi,pj) and
(pk,pl) if ‖(pi,pj)− (pk,pl)‖2 ≥ rc + ri

Proof: Consider the various interference possibilities ac-
cording to the primary (secondary) interference model and
the location of the corresponding vertices of the adjoint
graph shown in figure 4 (5). The length of the solid lines
(corresponding to communicating links) is at most rc while
the length of the broken lines (corresponding to the in-
terfering links) is at most ri. For the primary constraints,
‖(pi,pj) − (pk,pl)‖2 < rc. For the secondary interference,
we see that ‖(pi,pj)− (pk,pl)‖2 < rc + ri. Hence, in either
case, ‖(pi,pj) − (pk,pl)‖2 < rc + ri if there is an edge
between (pi,pj) and (pk,pl).

=

Fig. 4. Primary interference constraint and its effect on the separation
distance of the mid-points of the communicating links.

Observation 8: For the adjoint graph Ĝ(P ) and the sec-
ondary interference model described above, there will be an
edge between vertices (pi,pj) and (pk,pl) if ‖(pi,pj) −
(pk,pl)‖2 < ri − rc

Proof: Assume the modes pi,pj ,pj and pl, are all
distinct and ‖(pi,pj) − (pk,pl)‖2 < ri − rc. Now, consider
the secondary interference constraint as shown in the figure
6. According to the assumptions, ‖pi − pl‖2 < rc/2 + ri −
rc +rc/2 = ri which means, the two links will interfere under
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Fig. 5. Secondary interference constraint and its effect on the separation
distance of the mid-points of the communicating links.

the interference constraints assumed and there will be an edge
between (pi,pj) and (pk,pl) in the adjoint graph, Ĝ(P ).

pk

pl

pi pj

(p )i j, p

(p )k l, p

br /2c

b
r i

br -i rc

br /2c

Fig. 6. An illustration in aid of the proof of Observation 8.

From observations 7 and 8 we see that the adjoint graph
satisfies properties P1 (equation 4) and P2 (equation 5). The
auxiliary graph Â(Q) of the adjoint graph Ĝ(P ) = (Q, Ê)
can be constructed using the vertex set {s, t} ∪ B(Q), and
edge set as described by equation 7. Let λq(q ∈ Q) denote
the component of an arbitrary rate-vector, whose entries are
indexed by vertices of the adjoint graph Ĝ(P ) = (Q, Ê). The
following LP defined on Â(Q) determines the feasibility of λ:

min
∑

e∈δ+(s) xe

subject to:∑
e∈δ+(v) xe −

∑
f∈δ−(v) xf = 0, ∀v ∈ B(Q)∑

v∈{P̂∈B(P )|p∈P̂}
∑

e∈δ+(v) xe ≥ λq,∀q ∈ Q

x ≥ 0.

(8)

The flow-problem defined above can be solved in strong poly-
nomial time. The following theorem is the decision procedure
for the membership of λ in the single-hop capacity region of
a wireless network.

Theorem 9: Let λ be an arbitrary rate vector whose entries
are indexed by the vertices in the adjoint graph Ĝ(P ) =
(Q, Ê) and let x be the optimal flow identified by equation 8,
λ is feasible G(P ) if and only if 1T x ≤ 1.

From theorem 9 we have the fact that membership in the
single-hop capacity region of a wireless network whose nodes
are distributed in a plane of fixed width can be decided in
strong polynomial time.

V. CONCLUSION

We have presented two restricted instances where the prob-
lem of rate feasibility in wireless networks has polynomial

time algorithms, even though the most general problem ver-
sion is NP-hard. Our results suggest that many important
“practical” problem instances seem tractable for feasible rate
allocation. Another potentially interesting aspect is that ideally,
one would also like to have a distributed implementation for
such algorithms. In that sense, the next task would be to design
simple algorithms that can be incorporated seamlessly in cross-
layer design. In summary, we believe that the results of this
paper will have impact on the future design of algorithms for
cross-layer design.
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