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ABSTRACT
An analysis for the phase transition in a random NK land-
scape model is given. For the fixed ratio model, NK(n, k, z),
Gao and Culberson [17] showed that a random instance gen-

erated by NK(n, 2, z) with z > z0 = 27−7
√

5
4

is asymptoti-
cally insoluble. Based on empirical results, they conjectured
that the phase transition occurs around the value z = z0.
We prove that an instance generated by NK(n, 2, z) with
z < z0 is soluble with positive probability by providing
a variant of the unit clause algorithm. Using branching
process arguments, we also reprove that an instance gener-
ated by NK(n, 2, z) with z > z0 is asymptotically insoluble.
The results show the phase transition around z = z0 for
NK(n, 2, z). In the course of the analysis, we introduce a
generalized random 2-SAT formula, which is of self interest,
and show its phase transition phenomenon.

Keywords
NK landscape, phase transition, random k-SAT problem,
unit clause algorithm, branching process

1. INTRODUCTION
A fitness landscape is a function that maps each genetic
composition (genotype) to the fitness of the expression (phe-
notype) of the genetic composition in an environment. The
fitness landscape sometimes refers its graphical representa-
tion as the word “landscape” indicates. The notion of fitness
landscape dates back to Wright [37]. It is well known that,
for an organism, the contribution of one gene to the overall
fitness generally depends on other genes. Such an interac-
tion between genes is called epistasis. Wright paid attention
to how epistasis affects the shape of the fitness landscape.
When there is no epistasis between genes, the fitness land-
scape has a unimodal shape since the contribution of each
gene to the fitness can be optimized independently of other

∗This work was partially carried in Microsoft Research and
partially supported by Institute of Theory and Education
for Computing (ITEC) at Seoul National University.

genes. In the case that epistases exist, the fitness landscape
may have a number of local fitness optima. A population of
organisms would evolve to reach one of those local optima
in a hill-climbing manner. These phenomena first observed
by Wright have had a great influence on the design of fitness
landscape models afterwards.

Mathematical models to study the evolution on fitness land-
scape have been proposed by many researchers including
Franklin and Lewontin [15], Lewontin [26], Ewens [12], Kauff-
man and Weinberger [23], Macken ad Perelson [27]. Among
them, the NK model proposed by Kauffman [22] has at-
tracted considerable attention. Kauffman devised the NK
model of fitness landscapes to investigate how the “rugged-
ness” of a landscape changes according to the degree of epis-
tasis. He assumed that the fitness landscapes of the realistic
biological environments have some correlation structures, in
that the fitness value of one genotype and those of simi-
lar genotypes are positively correlated. The NK model is a
mathematical model that generates fitness landscapes with
correlation structures in which we can control the degree of
epistasis and so, indirectly, the ruggedness and correlation
degrees of the landscapes.

An NK landscape is specified by two parameters n and k,
where n represents the number of genes an organism has and
k stands for the number of other genes that epistatically af-
fect the contribution of each gene to the overall fitness value
of the organism. For example, if k is zero, there is no in-
teraction among genes. Generally, the parameter k plays
a role in controlling the degree of epistases between genes.
In other words, the larger the value of k is, the more genes
interact one another in constructing the fitness landscape.
Through experiments in a few types of the NK model, Kauff-
man suggested that the ruggedness of the landscape gener-
ally increases as k increases [22].

The NK model has been used in biology, physics, and so
on. In biology, the NK model explains evolutions of bio-
logical objects including amino acid sequences [23] [24] [27],
protein or RNA sequences [32] [4] [13] [14] [29], molecular
quasispecies [10]. The NK model has been served as a ref-
erence point for understanding the properties of those bio-
logical objects. In statistical physics, models of spin-glasses
are investigated from the viewpoint of NK models in [33].
The evolution of organizations in a business environment is
modelled based on the NK model [25]. The NK model has
been used as a benchmark for evaluating various encoding
schemes and genetic operators on the evolutionary algorithm
and comparing them in the evolutionary computation area
[3] [20] [28]. It has been also served as a basis for the design
of problem difficulty measures for evolutionary algorithms



[21] [31] and the design of epistasis measures [30].

The NK model itself has been studied over years. Kauffman
[22] analyzed various features of the NK model in terms of
adaptive walks. Weinberger [33] and Fontana et al. [14]
carried out more detailed analysis of such walks. Evans and
Steinsaltz [11] showed the asymptotic number of local op-
tima in NK landscapes. Weinberger [34] and, later, Wright
et al. [36] studied the computational complexities of prob-
lems related to NK landscapes. Gao and Culberson [18]
showed a treewidth result for NK landscapes in a proba-
bilistic way.

Recently, Gao and Culberson [17] provided results about the
phase transition in a random NK landscape model. A phase
transition in probabilistic combinatorial theory refers to the
phenomenon that the probability that an instance of the
random model has a property rapidly changes as the order
parameter of the random model changes around a certain
value. Before describing the results about the phase transi-
tion, we present the original NK landscape model proposed
by Kauffman [22] and the probabilistic models proposed by
Gao and Culberson. An NK landscape f(x1, x2, . . . , xn) =∑n

i=1 fi(xi, Π(xi)) is a real-valued function defined on the
set of binary n-tuples, {0, 1}n. It is a summation of lo-
cal fitness functions fi’s, where each fi has a main vari-
able xi and the variables in the neighborhood of xi as in-
puts. Here the neighborhood Π(xi) is a subset of the set
{x1, x2, . . . , xn} \ {xi} and its size |Π(xi)| is k. Kauffman
considered the variables in the neighborhood Π(xi) in two
different ways, adjacent neighborhood and random neigh-
borhood. In the adjacent neighborhood model, Π(xi) con-
sists of the closest k variables (with a certain tie-break)
to the main variable xi with respect to the indices mod-
ulo n. In the random neighborhood model, Π(xi) is com-
posed of the k variables chosen uniformly at random from
{x1, x2, . . . , xn} \ {xi}. Each local fitness function is fully
specified by assigning a real number uniformly distributed
between zero and one for each of 2k+1 inputs independently
of other inputs.

By restricting the fitness values of local fitness function to
0 and 1, one may consider the computational aspect of the
NK model more easily. Given an NK landscape f , a de-
cision problem called solubility problem is to ask whether
the maximum of f is equal to n. An NK landscape f is
called insoluble if there is no assignment having f equal to
n. Weinberger [34] and Wright et al. [36] proved that, while
the solubility problem for the NK landscape with adjacent
neighborhood can be solved in polynomial time for a fixed
k, the problem for the NK landscape with arbitrary neigh-
borhood is NP-complete for k ≥ 2.

To investigate the difficulties of the solubility problems for
typical NK landscapes with random neighborhood, Gao and
Culberson proposed two probabilistic models of NK land-
scapes, the uniform probability model and the fixed ratio
model inspired by the two famous random graph models
G(n, p) and G(n, m), respectively. In the uniform probabil-
ity model, the fitness value of each input for a local fitness
function is independently assigned to zero with probability
p and one with probability 1 − p. This process is indepen-
dently repeated for each local fitness function. It was shown
that an instance generated by this model is asymptotically
insoluble or, if it is soluble, the solution can be found in
polynomial time with high probability. However, unless p
decreases very rapidly with n, it is easy to see that, with
high probability, a random instance has a local fitness func-
tion that takes zero values for all inputs. This makes the

random instance insoluble with high probability. For this
reason, the model is not desirable as a model for represent-
ing typical instances.

The fixed ratio model overcomes the drawback of the uni-
form probability model by fixing the ratio of zero values for
each local fitness function. The fixed ratio model NK(n, k, z)

is as follows. The value of z ranges in [0, 2k+1]. If z is an
integer, for each local fitness function fi, we choose z tuples
of 2k+1 possible assignments uniformly at random and in-
dependently of other fj ’s. Then fi = 0 for those tuples and
fi = 1 for the other tuples. If z is not an integer so that
z = bzc + h (0 < h < 1), we specify the fitness values of
b(1−h)nc local fitness functions as if they were local fitness
functions in NK(n, k, bzc) and those of the rest of the local
fitness functions as if they were in NK(n, k, bzc+1). Another
way to specify the fitness values of local fitness functions is
that we regard each local fitness function as if it were a lo-
cal fitness function in NK(n, k, bzc) with probability 1 − h
and in NK(n, k, bzc + 1) with probability h, independently
of all others. For example, if z = 2 + h, then each local
fitness function has zero values for two random assignments
with probability 1 − h and three random assignments with
probability h. This new model is denoted by NK(n, 2, z).

It is easy to see that NK(n, 2, z) is essentially the same as
NK(n, 2, z).

For k = 2, it was proved [17] that an instance generated

by the fixed ratio model with z > z0 = 27−7
√

5
4

≈ 2.837 is
almost always insoluble, where an event An almost always
occurs if limn→∞ Pr[An] = 1. And it was empirically sug-
gested that the instances generated by the model with z < z0

are soluble and the solutions are found in polynomial time
with high probability. From these, Gao and Culberson con-
jectured that the phase transition takes place around z = z0

in the fixed ratio model with k = 2.

In this paper, we prove that an instance generated by the
model with z < z0 is soluble with positive probability by
providing a polynomial time algorithm. This settles the
conjecture in an affirmative way. Using branching process
arguments, we also reprove that an instance generated by
the model with z > z0 is almost always insoluble:

Theorem 1. If 0 < z < z0, then there exists α > 0
depending on z such that the probability of NK(n, 2, z) being
soluble is at least α as n goes to infinity. If z > z0, then
NK(n, 2, z) is almost always insoluble.

Though it is a very interesting question, we have no idea
whether α can be arbitrarily close to 1 or not.

To prove Theorem 1, we reduce the solubility problem of
an NK landscape to the (k + 1)-SAT problem as in [17].
For given Boolean variables, the variables and their comple-
ments are called literals. Two literals are strictly distinct if
their underlying variables are different. A k-clause is a dis-
junction of k strictly distinct literals and a k-SAT formula
is a conjunction of k-clauses. Given a k-SAT formula F , the
k-SAT problem is to ask whether there is a truth assignment
satisfying F .

Let an NK landscape f =
∑n

i=1 fi(xi, Π(xi)). For each local
fitness function fi, we construct the (k +1)-clauses with the
literals of the main variable and neighborhood variables of fi

such that fi is equal to zero only for the assignments that do
not satisfy one of the clauses. For example, suppose that a



local fitness function fi(xi, xj , xk) has zero value only when
(xi, xj , xk) is one of (0, 0, 0), (0, 1, 0), and (1, 1, 0). Then, we
construct three 3-clauses (xi ∨ xj ∨ xk), (xi ∨ xj ∨ xk), and
(xi ∨ xj ∨ xk) for fi(xi, xj , xk). We take the conjunction of
the all (k+1)-clauses obtained from all the fi’s to construct
a (k + 1)-SAT formula F . It is easy to check that f is
soluble if and only if F is satisfiable. Thus, it is sufficient
to consider the phase transition for the satisfiability of the
3-SAT formula F .

There have been much studies for the phase transition of
the satisfiability of the random 3-SAT formula in which the
3-clauses are chosen independently and uniformly at ran-
dom [1] [2] [9] [16]. In verifying lower bounds of the thresh-
old, many results were obtained by applying variants of the
unit clause algorithm that were first analyzed by Chao and
Franco [5] [6]. We will also apply a variant of the unit clause
algorithm to the 3-SAT formula reduced from the random
NK landscape NK(n, 2, z) in the subcritical region of the
phase transition. In Section 2, we describe the unit clause
algorithm and investigate some properties of the reduced 3-
SAT formula when the unit clause algorithm is applied to it.
The properties suggest that it is useful to consider four types
of random 2-clauses or random equalities (of truth values of
variables).

In Section 3, we introduce a generalized random 2-SAT for-
mula consisting of the random 2-clauses and the random
equalities presented in Section 2. It generalizes the well-
known random 2-SAT formula in which the 2-clauses are
chosen independently and uniformly at random [7]. After
a parameter D is introduced, a threshold phenomenon re-
sult is obtained: A random 2-SAT formula generated by the
model is satisfiable with positive probability if D < 1 and
almost always unsatisfiable if D > 1. It turns out that the
threshold is not sharp.

In Section 4, we provide the threshold phenomenon result
for the satisfiability of the reduced 3-SAT formula, or equiv-
alently, the proof of Theorem 1. To obtain the result for
the subcritical region, we use similar approaches developed
in Section 3. For the supercritical region, we introduce an-
other random 2-SAT model, which is similar to the general-
ized random 2-SAT model presented in Section 2. The for-
mula generated according to the model consists of random
2-clauses resolved from the 3-SAT formula reduced from
NK(n, 2, z).

2. THE UNIT CLAUSE ALGORITHM
In the subcritical region, we will apply a variant of unit
clause algorithm to the 3-SAT formula F (n, 2, z) reduced
from a random instance of NK(n, 2, z), and show that the
algorithm finds a satisfying assignment with positive proba-
bility. The 3-clauses in the formula are to be regarded as or-
dered 3-tuples and (copies of) literals came from main vari-
ables are placed in the first coordinate of the corresponding
3-clauses. Those (copies of) literals are called main (copies
of) literals.

We now consider unit clause algorithm (UC). UC takes as
input a formula F and outputs a satisfying assignment of the
input, or “cannot determine.” In each iteration of the loop of
UC, it chooses the literal l contained in a unit clause chosen
uniformly at random among all the unit clauses. If there is
no unit clause, it chooses a literals l uniformly at random
among all the literals not assigned truth values. And it sets
l to be true. Then all the clauses containing l are satisfied
and all the clauses containing l are shortened to the clauses
without l. UC fails to produce a satisfying assignment if and

UC(F ):
V ← {x1, x2, . . . xn};
S ← ∅;
For t = 0, 1, . . . , n− 1

If |C1(t)| 6= 0
Choose l uniformly at random from C1(t);
V ← V − {var(l)};

Else
Choose l uniformly at random from L(V );
V ← V − {var(l)};

Satisfy all clauses of F containing l;
Remove l from all clauses of F ;
S ← S ∪ {l};

If C0(n) = ∅ Output solution S;
Else Output “Cannot determine.”;

Figure 1: Pseudo code of the unit clause algorithm

only if 0-clause, a clause with no literal, is created.

Figure 1 describes the pseudo code of UC. For a literal l,
let var(l) be the underlying variable of l. For a set V =
{x1, . . . , xn} of Boolean variables, let L(V ) denote the set
of 2|V | literals on the variables of V . For i ≥ 0, let Ci(t)
denote the collection of all the i-clauses of F at the end of
the tth iteration. If F = F (n, 2, z), C3(0) is the collection
of all the clauses of F and the other Ci(0)’s are empty. In
general, it is easy to see that

Ci(t+1) = {c|c ∈ Ci(t) , l /∈ c , l /∈ c or (c∧l) ∈ Ci+1(t))}.

When we apply UC to F (n, 2, z), there are three main dis-
tinctive properties to be considered. First, there may be a
pair of 3-clauses of the form (l1 ∨ l2 ∨ l3) and (l1 ∨ l2 ∨ l3). If

l̄3 is set to be 1, then two clauses (l1∨ l2) and (l1∨ l2) would
be created. The conjunction of the two clauses is equiva-
lent to the unit clause (l2). So we will regard it as the unit
clause. This property is called sublimation. If we apply UC
without sublimation, UC almost always fails to satisfy F .
Note that there are Θ(n) number of pairs of 3-clauses of the

form (l1 ∨ l2 ∨ l3) and (l1 ∨ l2 ∨ l3) in C3(0). In the process

of UC if l2 is set to be true, then two clauses (l1 ∨ l3) and

(l1 ∨ l3) would be created. Then if l3 is set to be true, they

would be reduced to a pair of unit clauses (l1) and (l1).

Second, there may be a pair of 3-clauses of the form (l1 ∨
l2 ∨ l3) and (l1 ∨ l2 ∨ l3). Again, if l̄3 is set to be true, then

two clauses (l1 ∨ l2) and (l1 ∨ l2) would be produced. The
conjunction of the two clauses is equivalent to the equality
l1 = l2.

Third, the main (copies of) literals from different local fit-
ness functions are strictly distinct. This fact turns out to
increase the threshold value.

In the process of UC, 2-clauses are produced. Some pair
of 2-clauses will become equalities by the second property.
Due to the third property, 2-clauses with main variables will
appear so that the literals in their first places are strictly dis-
tinct. Similarly, equalities with main variables will appear
too. Pairs of two clauses like (l1 ∨ l2) and (l1 ∨ l2) do not
appear because of the sublimation property. Motivated by
these facts, we will separately consider a generalized random
2-SAT formula consisting of random 2-clauses and equalities,



3−clauses

Uniform random 2−clauses

Uniform random equalities

Random 2−clauses with main literals

Random equalities with main literals

Blue unit clauses

Red unit clauses

Figure 2: Flow diagram of clauses in the process of
UC

both with and without main variables.

As mentioned below, unit clauses consisting of main (copies
of) literals and unit clauses consisting of other (copies of)
literals have different properties. So we will consider two
types of unit clauses. Unit clauses consisting of main literals
and the (copies of) literals therein are to be colored red. The
other unit clauses and the (copies of) literals therein are to
be colored blue. Then Figure 2 is the flow diagram of clauses
in the process of UC.

3. A GENERALIZED RANDOM 2-SAT FOR-
MULA

In this section, we define a generalized random 2-SAT for-
mula and examine its satisfiability. As mentioned in Section
2, the generalized random 2-SAT formula has four types of
random 2-clauses or equalities. Here 2-clauses and equalities
are to be regarded as ordered pairs. The first type consists
of typical uniform random clauses, that is, clauses chosen
uniformly at random among all the 2-clauses. The second
type consists of uniform random equalities over all the lit-
erals. The third and fourth types are the same as the first
and the second types, respectively, except that the copy of
literals in the first places of the clauses or the equalities are
pairwise strictly distinct. Those copies of literals are called
main literals. Let c1, c2, c3 and c4 be non-negative real num-
bers with c3 + c4 ≤ 1. Denote Fi = Fi(n, ci) the conjunc-
tion of cin 2-clauses or equalities of type i with repetition,
1 ≤ i ≤ 4. Denoted by F (n, c1, c2, c3, c4) is the conjunction
of the four random formulae with pairwise strictly distinct
main literals.

If c2 = c3 = c4 = 0, it is well known [7, 8, 19] that
F (n, c1, 0, 0, 0) is almost always satisfiable if c1 < 1 and
almost always unsatisfiable if c1 > 1. It turns out that the
parameter

D = c1 + 2c2 + c3 + 2c4 − (c3 + 2c4)
2

4
(1)

plays a similar role in the general case, as D essentially deter-
mines the branching ratio. Roughly speaking, the branching
ratio is the expected number of unit clauses produced when
a literal is set to be true. This is why a variant of UC
succeeds with positive probability if D < 1, and it almost
always fails if D > 1. More precisely, we have the following
theorem.

Theorem 2. If D < 1, then there exists α > 0 depend-
ing on ci’s so that the probability of F (n, c1, c2, c3, c4) being

satisfiable is at least α as n goes to infinity. If D > 1, then
the random formula is almost always unsatisfiable.

It is worth to note that α may not be close to 1 if c2 > 0
or c4 > 0 as it is not hard to see that (c2 + c4)n equalities
imply l = l̄ for a literal l with positive probability.

Theorem 2, in particular, says that the existence of main
literals makes the random formula easier to be satisfied.
For example, if there are 0.1n uniform random 2-clauses
and n random 2-clauses with main literals, then the ran-
dom formula is satisfiable with positive probability. On
the other hand, if there are 1.1n uniform random 2-clauses,
the random formula is almost always unsatisfiable. If one
equality is regarded as its corresponding two 2-clauses then
c1 + 2c2 + c3 + 2c4 represents the total number of 2-clauses.
The extra term −(c3 + 2c4)

2/4 is the effect of the existence
of main literals.

3.1 Subcritical Region
Now we prove the first part of Theorem 2. Without loss
of generality, we may assume c1 + c2 > 0 and c3 + c4 > 0.
Otherwise, some uniform random 2-clauses or random 2-
clauses with main literals might be added to F while the
conditions D < 1 and c3 + c4 ≤ 1 are kept. Here we define
some notations. “At time t” means after t times of iteration
of UC, or equivalently, after t literals have been set. Let
V (t) denote the set of variables not assigned truth values
at time t. For 1 ≤ i ≤ 4, let Fi(t) denote the conjunction
of remaining 2-clauses or equalities of Fi at time t. Define
|Fi(t)| to be the number of 2-clauses or equalities in Fi(t).
Let F (t) = F1(t) ∧ F2(t) ∧ F3(t) ∧ F4(t).

As in Section 2, unit clauses consisting of main (copies of)
literals and the main (copies of) literals themselves are col-
ored red. The other unit clauses and the (copies of) literals
therein are colored blue. Let B(t) and R(t) denote the set of
blue unit clauses and red unit clauses at time t, respectively.
Let VM (t) denote the set of the underlying variables of the
main literals of F3(t) and F4(t).

As mentioned, we apply a variant of UC that uses a different
literal selection policy. Think of UC as an imaginary server
whose task is satisfying one unit clause, if any, at each time.
We regard B(t) and R(t) as two task queues that the server
works for. The server will work for one queue at a time and
the queue selection is made randomly with a given proba-
bility p, which will be specified later. We call this modified
UC UC with switching server policy (UCS). Figure 3 de-
scribes the pseudo code of UCS. Note that if c3 + c4 = 1
and p < 1, then UCS may encounter the case that a literal
in L(V (t) − VM (t)) must be chosen while V (t) − VM (t) is
empty, which is, of course, impossible. We first consider the
case that c3 + c4 < 1. Let

p =
c1 + 2c2 +

√
(c1 + 2c2)2 + 2(c1 + 2c2)(c3 + 2c4)

c1 + 2c2 + c3 + 2c4 +
√

(c1 + 2c2)2 + 2(c1 + 2c2)(c3 + 2c4)
.

(2)
Note that 0 < p < 1. We defined p so that the expected

number of blue unit clauses produced at each time is less
than p and the expected number of red unit clauses pro-
duced at each time is less than 1− p. Using these facts and
by a coupling argument, we will show that, with positive
probability, no 0-clause is produced until (1 − ε)n variables
are assigned truth values, for a small constant ε > 0. When
(1 − ε)n variables are assigned truth values, the remaining
formula is very sparse and it is easy to show that the formula
is satisfiable with high probability.



UC with switching server policy (F ):
For t = 0, . . . , n− 1

χ(t) ← 1 with probability p, χ(t) ← 0 otherwise;
If χ(t) = 1

If B(t) 6= ∅
Pick a unit clause (l)
uniformly at random from B(t);

Else
Pick a literal l
uniformly at random from L(V (t));

If χ(t) = 0
If R(t) 6= ∅

Pick a unit clause (l)
uniformly at random from R(t);

Else
If V (t)− VM (t) = ∅ Exit;
Pick a literal l
uniformly at random from L(V (t)−VM (t));

Satisfy clauses of F containing l;
Remove all the copies of l and sublimate if possible;

Figure 3: Pseudo code of UCS

Note that at each time t, F (t) has the same distribution as
F (n−t, c1(t), c2(t), c3(t), c4(t)), where ci(t) = |Fi(t)|/(n−t).
This is a crucial property used in the analysis. The distri-
butions of the numbers of blue and red unit clauses highly
depend on the sizes of Fi(t)’s. So, we first show that |Fi(t)|’s
are highly predictable using Wormald’s theorem [35].

Lemma 1. We have

E[|F1(t + 1)| − |F1(t)|] = −2|F1(t)|
n− t

,

E[|F2(t + 1)| − |F2(t)|] = −2|F2(t)|
n− t

,

E[|F3(t + 1)| − |F3(t)|] = −(1 + p)
|F3(t)|
n− t

+ o(1),

E[|F4(t + 1)| − |F4(t)|] = −(1 + p)
|F4(t)|
n− t

+ o(1).

(3)

Proof. Omitted.

Using Lemma 1 and applying Wormald theorem, we may
have

Lemma 2. We almost always have

|F1(t)|
n− t

= c1(1− t

n
) + o(1),

|F2(t)|
n− t

= c2(1− t

n
) + o(1),

|F3(t)|
n− t

= c3(1− t

n
)p + o(1),

|F4(t)|
n− t

= c4(1− t

n
)p + o(1).

Proof. Omitted.

For 1 ≤ i ≤ 4, let bi(t) be the number of blue unit clauses
coming from Fi(t) at time t and let ri(t) be the number of
red unit clauses coming from Fi(t) at time t. We will ob-
tain the expectations and distributions of bi(t)’s and ri(t)’s,

conditioned on |Fi(t)|’s. Suppose that UCS sets a literal l
to be true at time t. Then b1(t) is the number of 2-clauses

in F1(t) that contain l. And r1(t) = 0 since there is no main
literal in F1(t). Note that, for each 2-clause (l1∨ l2) ∈ F1(t),

Pr[l = l1 or l = l2] = 1
n−t

. And the 2-clauses in F1(t) are

independent from one another. So b1(t) has a binomial dis-
tribution Bin[|F1(t)|, 1

(n−t)
]. The same argument can be ap-

plied to have that r2(t) = 0 and b2(t) has a binomial dis-
tribution Bin[|F2(t)|, 2

(n−t)
]. For b3(t), observe that b3(t)

is the number of the 2-clauses in F3(t) whose main literals

are l. Here we consider two cases according to the value
of χ(t). First, suppose that χ(t) = 1. Then b3(t) has a

Bernoulli distribution with density |F3(t)|
2(n−t)

since l may be

equal to at most one of the main literals in F3(t). When

χ(t) = 0, b3(t) = 0 since l cannot be equal to any of the
main literals in F3(t) and hence only unit clauses with main
literals are produced. For r3(t), observe that r3(t) is the
number of 2-clauses in F3(t) whose second literals are equal

to l. Suppose that l is not strictly distinct with one of main
variables of F3(t). Then, since exactly one 2-clause in F3(t)

has l or l as main literal, r3(t) has a binomial distribution
Bin[|F3(t)| − 1, 1

2(n−t−1)
]. Otherwise, r3(t) has a binomial

distribution Bin[|F3(t)|, 1
2(n−t−1)

]. Thus, the distribution of

r3(t) is a linear combination of Bin[|F3(t)|−1, 1
2(n−t−1)

] and

Bin[|F3(t)|, 1
2(n−t−1)

]. The same argument can be applied to

obtain the distributions of b4(t) and r4(t). If χ(t) = 1, b4(t)

has a Bernoulli distribution with density |F4(t)|
(n−t)

and if χ(t) =

0, then b4(t) = 0. And r4(t) has a binomial distribution
Bin[|F4(t)|−1, 1

(n−t−1)
] if l is not strictly distinct with one of

the main variables of F4(t). Otherwise, r4(t) has a binomial
distribution Bin[|F4(t)|, 1

(n−t−1)
]. Thus, the distribution of

r4(t) is a linear combination of Bin[|F4(t)| − 1, 1
(n−t−1)

] and

Bin[|F4(t)|, 1
(n−t−1)

].

The expectations of bi(t) and ri(t) are as follows;
[

E[bi(t)]
E[ri(t)]

]
= Ti(t) ·

[
p

1− p

]
+ o(1),

where

T1(t) = c1(1− t

n
)

[
1 1
0 0

]
,

T2(t) = c2(1− t

n
)

[
2 2
0 0

]
,

T3(t) = c3(1− t

n
)p

[
1
2

0
1
2

1
2

]
,

T4(t) = c4(1− t

n
)p

[
1 0
1 1

]
.

Then, for b(t) =
∑4

i=1 bi(t), r(t) =
∑4

i=1 ri(t), and T (t) =∑4
i=1 Ti(t), we have that

[
E[b(t)]
E[r(t)]

]
= T (t) ·

[
p

1− p

]
+ o(1).

Lemma 3. (Main Lemma) We have
[

E[b(t)]
E[r(t)]

]
<

[
p

1− p

]
,



where the inequality for the vectors means that the inequality
holds for each pair of the entries.

Proof. Since T (t) ·
[

p
1− p

]
≤ T (0) ·

[
p

1− p

]
, it suf-

fices to show that

T (0) ·
[

p
1− p

]
<

[
p

1− p

]
.

Clearly, T (0) =

[
c1 + 2c2 + 1

2
c3 + c4 c1 + 2c2

1
2
c3 + c4

1
2
c3 + c4

]
has two

nonnegative eigenvalues,

c1 + 2c2 + c3 + 2c4 ±
√

(c1 + 2c2)2 + 2(c1 + 2c2)(c3 + 2c4)

2
.

Let λ be the larger one. Since D < 1 implies λ < 1 and[
p

1− p

]
is an eigenvector of T (0) corresponding to λ,

T (0) ·
[

p
1− p

]
= λ

[
p

1− p

]
<

[
p

1− p

]
,

as desired.

Then using these facts and a coupling argument, we show
that the sizes of

∑ |B(t)| and
∑ |R(t)| are O(n). In the

course of that, we use a simplified version of Lazy-server
lemma, which was introduced by Achlioptas [1]. Suppose
that there is a server so that the probability that the server
would work at time t is w(t) and, if it works, it can handle
one task per unit time. And the expected number of tasks
that arrive to the server at time t is z(t). Then Lazy-server
lemma says that if z(t) is bounded above by w(t) uniformly
for all t, then the sum of sizes of the task queue over all t
would not become excessively large.

Lemma 4. We almost always have

(1−ε)n∑
t=0

|B(t)| < Cn, max
0≤t≤(1−ε)n

|B(t)| < logK n.

(1−ε)n∑
t=0

|R(t)| < Cn, max
0≤t≤(1−ε)n

|R(t)| < logK n,

for some constants C, K.

Proof. Omitted.

Now we prove that with positive probability no 0-clause is
produced until t = (1 − ε)n. Under the condition that no
0-clause is produced until time t − 1, the probability that
the same holds until time t is at least

(1− 1

2(n− t− 1)
)|B(t)|(1− |R(t)|

2(n− t− 1)
) ≥ (1− 2

εn
)|B(t)|+|R(t)|

So the probability that no 0-clause is produced until t =
(1− ε)n is at least

(1− 2

εn
)
∑n−εn

t=0 (|B(t)|+|R(t)|)+o(1) ≥ (1− 2

εn
)Cn+o(1) = e−

2C
ε +o(1).

Now consider the case that c3+c4 = 1. As mentioned above,
since V (0)−VM (0) is empty in this case. Unless p = 1, UCS

may encounter the case that χ(t) = 0 but V (t) − VM (t) is
empty. However, when we set p as in (2), UCS may not
encounter the case that χ(t) = 0 but V (t)−VM (t): Initially,
|V (t) − VM (t)| = 0. At each step t of the first δn steps,
if χ(t) = 1, then the expected change of |V (t) − VM (t)| is
1 + O(δ), as one uniform random literal eliminates 1 + O(δ)
2-clauses or equalities with main literals, in expectation.
The other effects are small enough if δ is small enough. If
χ(t) = 0, then the expected change is O(δ), as a non-main
literal eliminates one 2-clause or equality with main literal,
in average. Thus, at each step, |V (t) − VM (t)| increases
by p + O(δ), in average, and hence |V (t) − VM (t)| > 0 for
t ≥ 1 with positive probability. Notice that UCS produces
0-clause in the first δn steps with probability O(δ) (cf. Lazy-
Server Lemma). Therefore, with positive probability, UCS
proceeds to the first δn steps without encountering χ(t) = 0
and V (t) − VM (t) = ∅. After t = δn steps, it is easy to see
that c3(t) + c4(t) ≤ (1− a)(n− t) for some constant a > 0,
which is covered in the previous case.

3.2 Supercritical Region
Omitted by space limitation.

4. SOLUBILITY OF NK (N, 2,Z)
In this section, we prove Theorem 1 for the model NK(n, 2, z).

This is enough as NK(n, 2, z) is essentially the same as NK(n, 2, z).

Recall z0 = 27−7
√

5
4

≈ 2.837. In the first subsection, the re-
sult for the subcritical region z < z0 is proven. The next
subsection is for another proof for the supercritical region.
By the monotonicity of the solubility of NK(n, 2, z), it is
enough to consider cases 2 < z < z0 and z0 < z < 3.

4.1 Subcritical Region
As in NK(n, 2, z), a 3-SAT formula F can be reduced from

a random instance f of NK(n, 2, z). More precisely, a 3-
SAT formula Lj is reduced from each local fitness function
fj of f and F is the conjunction of Lj ’s. We call Lj a lo-
cal formula. Then a local formula consists of two 3-clauses
with probability 1 − h and three 3-clauses with probability
h, where z = 2+h. Main variables or its negations appeared
in a local formula are called main (copies of) literals. Note
that any pair of main literals came from different Lj ’s are
strictly distinct. UCS is to be applied to F as in the gener-
alized random 2-SAT problem. In the process of UCS, there
appear four types of 2-clauses or equalities as presented in
the previous section. Denoted by Fi(t) (1 ≤ i ≤ 4) is the 2-
SAT formula consisting of the 2-clauses or equalities of type
i at time t. Denoted by F5(t) is the 3-SAT formula consist-
ing of remaining local formulae at time t. Let |Fi(t)| be the
number of the 2-clauses or equalities in Fi(t) and |F5(t)| be
the number of the local formulae in F5(t) at time t. It is
clear that Fi(0) is empty for 1 ≤ i ≤ 4 and |F5(0)| = n.
The unit clauses consisting of main literals and the copies of
literals therein are colored red. The other unit clauses and
the copies of literals therein are colored blue. As in Section
3, we let B(t) (R(t), resp.) be the set of blue (red, resp.)
unit clauses at time t.

We run UCS with

p = p(t) = p0 − t

10n
, where p0 =

(
√

5− 1)

2
≈ 0.618. (4)

We defined p(t) so that the expected number of blue (red,
resp.) unit clauses produced at time t is uniformly bounded
above by p(t) (1−p(t), resp.) for 1 ≤ t ≤ (1−ε)n, where ε is
a small constant. Then by a coupling argument and Lazy-

server lemma, we will show that the sizes of
∑(1−ε)n

t=0 |B(t)|
and

∑(1−ε)n
t=0 |R(t)| are O(n). It is easy to show that, with



positive probability, no 0-clause is produced until t = (1 −
ε)n. As in Section 3, at t = (1−ε)n, the remaining formula is
sparse enough that it is satisfiable with positive probability.

Note that at each time t, F1(t) consists of uniform random
2-clauses over V (t), and F2(t) consists of uniform random
equalities over V (t). The formula F3(t) consists of random
2-clauses with main literals over V (t), and F4(t) consists of
random equalities with main literals over V (t), where the
main literals in F3(t) and F4(t) are pairwise strictly dis-
tinct. Let bi(t) and ri(t) be the numbers of blue and red
unit clauses coming from Fi(t) at time t, respectively. As
mentioned in Section 2, during the execution of UCS, there
occurs some sublimations. So we also need to consider the
number b5(t) (r5(t), resp.) of blue (red, resp.) unit clauses
produced by the sublimations.

As in Section 3, we investigate E[|Fi(t+1)|−|Fi(t)|], E[bi(t)]
and E[ri(t)] (1 ≤ i ≤ 5) and use Wormald theorem to obtain
approximations of |Fi(t)|, E[bi(t)], and E[ri(t)]. For 1 ≤
i ≤ 4, let ui(t) be the number of 2-clauses or equalities
that come from F5(t) to Fi(t) at time t, and di(t) be the
number of 2-clauses or equalities that is removed from Fi(t)
at time t. Then for 1 ≤ i ≤ 4, E[|Fi(t + 1)| − |Fi(t)|] =
E[ui(t)]−E[di(t)]. As we already obtained the equations for
E[di(t)], E[bi(t)] and E[ri(t)] (1 ≤ i ≤ 4) in Section 3, we
only need to consider E[ui(t)] (1 ≤ i ≤ 4), E[b5(t)], E[r5(t)]
and E[|F5(t + 1)| − |F5(t)|].

Lemma 5. We have

E[|F1(t + 1)| − |F1(t)|] = − 2|F1(t)|
n− t

+ p(t)(
4

7
− h

7
)
|F5(t)|
n− t

,

E[|F2(t + 1)| − |F2(t)|] = − 2|F2(t)|
n− t

+ p(t)(
1

14
+

h

14
)
|F5(t)|
n− t

,

E[|F3(t + 1)| − |F3(t)|] = −(1 + p(t))
|F3(t)|
n− t

+ (
8

7
− 2h

7
)
|F5(t)|
n− t

+ o(1),

E[|F4(t + 1)| − |F4(t)|] = −(1 + p(t))
|F4(t)|
n− t

+ (
1

7
+

h

7
)
|F5(t)|
n− t

+ o(1),

E[|F5(t + 1)| − |F5(t)|] = −(2 + p(t))
|F5(t)|
n− t

+ o(1).

Proof. Omitted.

We apply Wormald theorem to approximate |Fi(t)| for 1 ≤
t ≤ (1− ε)n.

Lemma 6. For the solution ϕi(x) : [0, 1 − ε] → R of the
following system of differential equations,

dϕ1

dx
= −2ϕ1(x)

1− x
+ (p0 − 0.1x)(

4

7
− h

7
)
ϕ5(x)

1− x
ϕ1(0) = 0,

dϕ2

dx
= −2ϕ2(x)

1− x
+ (p0 − 0.1x)(

1

14
+

h

14
)
ϕ5(x)

1− x
ϕ2(0) = 0,

dϕ3

dx
= −(1 + p0 − 0.1x)

ϕ3(x)

1− x
+ (

8

7
− 2h

7
)
ϕ5(x)

1− x
ϕ3(0) = 0,

dϕ4

dx
= −(1 + p0 − 0.1x)

ϕ4(x)

1− x
+ (

1

7
+

h

7
)
ϕ5(x)

1− x
ϕ4(0) = 0,

dϕ5

dx
= −(2 + p0 − 0.1x)

ϕ5(x)

1− x
ϕ5(0) = 1,

we almost always have

|Fi(t)| = ϕi(
t

n
) · n + o(n)

uniformly for all 1 ≤ t ≤ (1− ε)n and 1 ≤ i ≤ 5.

Proof. Omitted.

Note that expectations of bi(t) and ri(t) are as follows;
[

E[bi(t)]
E[ri(t)]

]
= Ti(t) ·

[
p(t)

1− p(t)

]
+ o(1),

where

T1(t) =
|F1(t)|
(n− t)

[
1 1
0 0

]
,

T2(t) =
|F2(t)|
(n− t)

[
2 2
0 0

]
,

T3(t) =
|F3(t)|
(n− t)

[
1
2

0
1
2

1
2

]
,

T4(t) =
|F4(t)|
(n− t)

[
1 0
1 1

]
,

T5(t) =
( 1
7

+ 2h
7

)|F5(t)|
(n− t)

[
2 1
1 1

]
.

Let b(t) =
∑5

i=1 bi(t) and r(t) =
∑5

i=1 ri(t). Then for

T (t) =

5∑
i=1

Ti(t),

[
E[b(t)]
E[r(t)]

]
= T (t) ·

[
p(t)

1− p(t)

]
+ o(1).

Then as in Section 3 with D < 1 and c3 + c4 = 1, by a cou-
pling argument and Lazy-server lemma, we obtain that al-

most always
∑(1−ε)n

t=1 |B(t)| and
∑(1−ε)n

t=1 |R(t)| are bounded
by O(n). Then we see that with positive probability no
0-clause is produced until t = (1 − ε)n. It is easy to see
that the remaining formula after t steps is satisfiable with
positive probability.

4.2 Supercritical Region
Omitted by space limitation.

5. CONCLUSION
In this paper, we analyzed the phase transition in NK land-
scape on the fixed ratio model, NK(n, 2, z). We also pro-
posed a generalized random 2-SAT model and introduced a
corresponding parameter D. Then a phase transition result
for the model is obtained, that is, if D < 1, the formula is
satisfiable with positive probability, and if D > 1, the for-
mula is almost always unsatisfiable. For the proof for the
subcritical region, we proposed a variant of unit clause algo-
rithm, the unit clause algorithm with switching server policy,
and analyzed it. For the supercritical region, a branching
process argument was used.

Using the similar argument as in the generalized random 2-
SAT model, it was proved that an instance generated by

NK(n, 2, z) with z < z0 = 27−7
√

5
4

is soluble with pos-
itive probability. To the best of our knowledge, this is
the first mathematical result that describes the behavior of
NK(n, 2, z) with z < z0. We also reproved that an instance
generated by NK(n, 2, z) with z > z0 is almost always in-
soluble using a branching process argument. This approach
is a novel one and simpler than that of Gao and Culberson.



From these results, we established the threshold value, z0,
of the phase transition in NK(n, 2, z).

We believe that our approach used for NK(n, k, z) with k = 2
works for general k ≥ 3 to obtain at least partial results for
the phase transition phenomenon.
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