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Lower and Upper Bounds for Linkage Discovery
Sung-Soon Choi, Kyomin Jung, and Byung-Ro Moon, Member, IEEE

Abstract—For a real-valued function defined on � � , the
linkage graph of is a hypergraph that represents the interactions
among the input variables with respect to . In this paper, lower
and upper bounds for the number of function evaluations required
to discover the linkage graph are rigorously analyzed in the black
box scenario. First, a lower bound for discovering linkage graph
is presented. To the best of our knowledge, this is the first result
on the lower bound for linkage discovery. The investigation on the
lower bound is based on Yao’s minimax principle. For the upper
bounds, a simple randomized algorithm for linkage discovery is
analyzed. Based on the Kruskal–Katona theorem, we present an
upper bound for discovering the linkage graph. As a corollary,
we rigorously prove that � � ��� � function evaluations are
enough for bounded functions when the number of hyperedges
is � �, which was suggested but not proven in previous works.
To see the typical behavior of the algorithm for linkage discovery,
three random models of fitness functions are considered. Using
probabilistic methods, we prove that the number of function
evaluations on the random models is generally smaller than the
bound for the arbitrary case. Finally, from the relation between
the linkage graph and the Walsh coefficients, it is shown that,
for bounded functions, the proposed bounds are eventually the
bounds for finding the Walsh coefficients.

Index Terms—Black box scenario, complexity analysis, linkage
discovery, lower and upper bounds, linkage graph, Walsh analysis.

I. INTRODUCTION

A. Linkage and Evolutionary Algorithms

F OR nontrivial combinatorial optimization problems,
the encoding of solutions usually contains interactions

between bits (or genes), i.e., the contribution of a bit to the
fitness function depends on other bits. Such an interaction
between bits is called linkage or epistasis. Incorporating the
process of discovering the linkage structure into evolutionary
algorithms is now considered as a standard approach to improve
the performance of evolutionary algorithms.

According to the building block hypothesis [1], [2], a genetic
algorithm (GA) implicitly gives favor to low-order, high-quality
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schemata and, over time, it generates higher order high-quality
schemata from low-order schemata via crossover. In order that
high-quality schemata are well preserved, it is thus important
to identify the bits of strong linkage and reorder the bit posi-
tions such that those bits stay close together on the chromosome.
For this reason, there were proposed a number of reordering
methods. They may be classified into two categories, static re-
ordering methods and dynamic reordering methods. Static re-
ordering methods identify the bits of strong linkage and per-
form the reordering of bit positions before the genetic process.
Once the genetic process starts, the representation is statically
used all through the algorithm. They were successfully applied
to the graph/circuit partitioning problems [3]–[5]. On the other
hand, dynamic reordering methods change or evolve the repre-
sentation dynamically in the genetic process. Examples of the
GAs with dynamic reordering methods include the messy GA
[6]–[8], the gene expression messy GA (GEMGA) [9], and the
linkage learning GA (LLGA) [10].

Estimation-of-distribution algorithms (EDAs) utilize link-
ages among bits to learn the probability distribution of
high-quality solutions and generate promising solutions from
the distribution. In fact, linkage structures were not used in the
early versions of EDAs such as the population-based incre-
mental learning algorithm (PBIL) [11] and the compact genetic
algorithm (CGA) [12]. They evolve the marginal distribution
for each bit, assuming that there is no dependency between bits.
The linkage information for bit pairs was first used in the mutual
information maximization for input clustering (MIMIC) [13]
and later used in the bivariate marginal distribution algorithm
(BMDA) [14]. The linkage structure for bit subsets of higher
order was evolved and exploited in recent EDAs including the
Bayesian optimization algorithm (BOA) [15], the hierarchical
BOA (hBOA) [16], and the factorized distribution algorithm
(FDA) [17].

Recently, Streeter [18] presented an efficient algorithm,
which combines a linkage detection algorithm with a local
search heuristic, to optimize bounded fitness functions with
nonoverlapping subfunctions. Wright and Pulavarty [19]
showed that exact factorization can be constructed for a class of
fitness functions by incorporating linkage detection algorithm
into the factorization process.

B. Linkage Discovery in the Black Box Scenario

A real-valued function is pseudo-Boolean if it is defined on
. The support set of a pseudo-Boolean function is the

set of bits that depends on and it is denoted by . For
a pseudo-Boolean function , an additive expression of is a
finite sum of subfunctions of the following form:

1089-778X/$25.00 © 2009 IEEE
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where ’s are pseudo-Boolean functions. If can be repre-
sented as an additive expression in which and the
size of the support set of is at most for all , then is called

-bounded. Many combinatorial optimization problems induce
bounded fitness functions. Examples include the NK landscape
problem, the MAX -CUT problem, the MAX -SAT problem
[20], and the constraint satisfaction problem [21]. Denote by
the set of positive integers from 1 to , i.e., .
Given a subset of , we say that there is a linkage (or an
epistasis) among the bits in if, for any additive expression
of , there exists such that . The
linkage graph of is a hypergraph , where each
bit in represents a vertex and a subset of belongs to
the edge set if and only if there is a linkage among the bits
in . For a subset in is called a hyperedge of . If a
hyperedge is not contained in any other hyperedge of
is called a maximal hyperedge.

For example, consider the following simple function:

If we let and
can be represented as an additive expression . In this
expression, each subfunction of has a support set of which
size is at most 3 and so is 3-bounded. It can be shown that the
support sets of and and , are hyperedges
of . By definition of linkage, the nonempty subsets of
and are also hyperedges of . The linkage graph

consists of the vertex set and the edge set
.

There are two maximal hyperedges in and .
We consider the problem to discover the linkage graph of a

bounded pseudo-Boolean function in the black box scenario.
In the black box scenario, only the minimal prior knowledge
of is given such as the number of bits that depends on,
and the boundedness information of . To know the function
value for an input string, we should query the black box. The
black box scenario has been used for the analysis of random-
ized search heuristics [22]. The main interest of this paper is to
analyze the number of queries, i.e., the number of function eval-
uations required in discovering the linkage graph of a -bounded
pseudo-Boolean function. In particular, we put emphasis on the

-bounded functions such that is a constant independent of
. As described in [23] and [24], once the linkage graph of a

given function is discovered, the Walsh coefficients of can
be found efficiently (by using additional function evaluations).
Thus, the algorithm of discovering the linkage graph is useful
for the problem of finding the Walsh coefficients.

There were a few rigorous analyses on the problem to
discover the linkage graph. For a -bounded pseudo-Boolean
function with constant , there were algorithms proposed
using a polynomial number of function evaluations. Kargupta
and Park [25] first provided a deterministic algorithm based
on the relation between Walsh coefficients requiring
function evaluations. Later, Heckendorn and Wright [23],
[24] extended the work of Kargupta and Park to propose an
efficient randomized algorithm, the hyperedge-candidate-based

linkage discovery algorithm (HCA), which finds the hyper-
edges in a bottom-up fashion (from low- to higher orders).1

Under a random model of fitness functions with max-
imal hyperedges, they showed that the algorithm terminates
after function evaluations on average. For a
pseudo-Boolean function with nonoverlapping subfunctions,
Streeter [18] presented an efficient randomized algorithm to
find the connected components of the linkage graph based
on binary search. It terminates only after function
evaluations.

C. Contributions: Arbitrary Case

In this paper, we rigorously analyze the lower and upper
bounds for the number of function evaluations required to
discover the linkage structure of a given pseudo-Boolean func-
tion. When is a -bounded function defined on , the
bounds for discovering the linkage structure of are basically
provided in terms of and . If we focus on the situation that
is a constant independent of , our contributions become more
clear.

First, we investigate the lower bound for the problem to dis-
cover the linkage graph. Let be the set of -bounded
pseudo-Boolean functions defined on whose linkage
graphs have maximal hyperedges.

Theorem 1: Suppose that is a constant and
for some constant . Given a constant , any ran-
domized algorithm that, for any , finds with
error probability at most requires function
evaluations.

The investigation on the lower bound mainly depends on
Yao’s minimax principle [26]. To the best of our knowledge, this
is the first result on the lower bound for linkage discovery. This
result would serve as the basis in analyzing the performance of
evolutionary algorithms for the problems such as concatenated

-deceptive trap functions.
To investigate the upper bounds for discovering the linkage

graph, we analyze the randomized algorithm HCA to obtain the
following result.

Theorem 2: Suppose that is a -bounded pseudo-Boolean
function defined on , is a constant independent of ,
and the number of maximal hyperedges in is
for a nonnegative integer and . Then, for any
constant , HCA finds the linkage graph in
function evaluations with error probability at most , where

.
Theorem 2 implies that function evaluations are

enough for arbitrary -bounded functions with maximal
hyperedges for constant . This is stronger than the result of
Heckendorn and Wright [23], [24], in that they achieved the
upper bound only in terms of the expected number of function
evaluations on a random model of fitness functions. Our analysis
is based on the Kruskal–Katona theorem [27], [28], which helps
to effectively bound the number of bit subsets that the algorithm
checks for a hyperedge in finding the linkage graph.

1In this paper, we call the algorithm of Heckendorn and Wright HCA instead
of its original name. The reason of calling it HCA and its description are pro-
vided in Section II-A.
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D. Contributions: Random Models

To see the typical behavior of the algorithm for linkage
discovery HCA, we consider three random models of fitness
functions: the uniform probability model, the uniform density
model without replacement, and the uniform density model
with replacement. The uniform probability model
generates a fitness function in the following steps. First,
it chooses each -order subset of with probability and
independently of the other subsets. Then, it sets a function
for each subset chosen in the previous step and generates
the fitness values of for the bit strings defined on in an
arbitrary way. Finally, a fitness function is constructed by
summing up ’s, i.e., . The uniform density model
without replacement chooses -order subsets
of uniformly at random and without replacement from the
possible -order subsets of . The uniform density model
with replacement chooses -order subsets of
uniformly at random and with replacement from the possible

-order subsets of . Then, they generate a fitness function
in the same way as in the uniform probability model.

The three models specify only the bits that subfunctions may
depend on and do not make any assumption for the values that
the subfunctions have. There are many problems whose in-
stances are usually generated in the framework of these models.
Examples are the MAX -SAT problem [29], the MAX CUT
problem [30], the problem of maximizing NK landscapes
[31], etc. The random models have served as a test bed for the
theoretical studies on evolutionary algorithms. Heckendorn and
Wright [23], [24] analyzed HCA on the uniform density model
with replacement for a specific parameter. The uniform density
model without replacement was used by Gao and Culberson
[32] to investigate the space complexity of EDAs.

In the following, “a sequence of events almost always
occurs” means that .

Theorem 3: Let be a constant independent of . For a non-
negative integer and , suppose that is generated
from one of the following models:

1) with ;
2) with ;
3) with .

Then, for any constant , the number of function evalu-
ations of HCA to guarantee the error probability at most is
almost always , where .

To prove Theorem 3, the second moment method [33] and
coupling arguments among the models are crucially used. The-
orem 3 describes the behaviors of HCA on the three random
models in the sense of “high” probability. For a random func-
tion from with , the number of
subfunctions ’s generated by the random model is almost al-
ways , provided that is a positive constant. For a
random function from or with

, the number of subfunctions ’s generated by the
random models is . Because the subfunctions may be
arbitrary, for a random function in Theorem 3, we may as-
sume that the number of maximal hyperedges in is (almost
always) . In this regard, Theorem 3 (compared with
Theorem 2) implies that the number of function evaluations of

Fig. 1. Lower and upper bounds for linkage discovery (a)� � � and (b)� � �.

HCA on the random models is generally smaller than the upper
bound for the arbitrary case, which is described in more detail
in the following.

Let . Then, for , the lower bound of
follows from Theorem 1 (provided that

for some constant ). Fig. 1 compares the lower bound,
the upper bound for the arbitrary case, and the upper bounds
on the random models from Theorems 1, 2, and 3, respectively.
It shows the change of the bounds in terms of , and as
the number of maximal hyperedges increases, i.e., as and
increase. The difference between and is at most one, which
means that the lower and upper bounds are within a factor of

. When and , the upper
bounds on the random models are strictly less than the upper
bound for the arbitrary case. In this case, HCA uses less function
evaluations on the random models than the bound for the worst
case. For example, when and , the upper bounds
on the random models are less than the upper bound for the
arbitrary case by a factor of [ and ].

E. Organization

The rest of this paper is organized as follows. Previous works
for linkage discovery are reviewed in Section II. In Section III,
we briefly introduce Yao’s minimax principle and present a
lower bound for discovering linkage graph based on Yao’s min-
imax principle. In Section IV, the algorithm HCA is analyzed
to provide an upper bound for discovering linkage graph. In
Section V, the number of function evaluations by HCA on the
three random models is given. Based on the relation between
linkage graph and Walsh coefficients, implications of our re-
sults to finding Walsh coefficients are presented in Section VI.
Finally, Section VII concludes this paper with suggestions for
future work.

II. PREVIOUS WORKS

This section describes previous works for linkage discovery
mainly focusing on the results of Heckendorn and Wright [23],
[24].

A. Algorithm for Linkage Discovery

The linkage identification by nonlinearity check (LINC) [34]
presents a perturbation method to determine whether a second-
order subset of has a linkage with respect to a function .
Given a string , it checks the existence of nonlinearity within
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Fig. 2. Pseudocode of the HC-based linkage discovery algorithm (HCA).

the two bits in by flipping the bits of in individually and
simultaneously and adding/subtracting the function values at the
flipped strings. Heckendorn and Wright [23], [24] generalized
the method to detect linkage for higher order subsets. Let be a
pseudo-Boolean function, be a subset of , and be a string
in . They defined the linkage test function of , and

as follows2:

where represents the string consisting of ones in the bit po-
sitions of and zeros in the rest and, for two strings

means the bitwise addition modulo 2 of and .
The linkage test function performs a series of function eval-
uations at and the strings obtained by flipping to detect the
existence of the linkage in . The following lemma describes
the usefulness of the linkage test function in finding hyperedges
of .

Lemma 1: Suppose that is a -bounded pseudo-Boolean
function defined on . Then, the following hold.

a) A subset of is a hyperedge of if and only if
for some string .

b) For a -order hyperedge of , the probability that
for a string chosen uniformly at random

from is at least .
c) For a hyperedge of , every -order subset of is

also a hyperedge for .
The proof of Lemma 1 was provided explicitly or implicitly in
[24].3

Lemma 1 a) and b) indicate that the linkage test function
detects a hyperedge with one-sided error. Thus, by repeatedly
evaluating the test function for randomly chosen strings, the

2In fact, Heckendorn and Wright suggested the notion of probe, which is the
linkage test function multiplied by a positive constant. Because the constant
does not affect our result, it is omitted for simplicity.

3If Lemma 1 a) is true, Lemma 1 b) and c) are easily implied from the the-
orems in [24]. Lemma 1 a) also can be proved by using the theorems in [24]
without much difficulty and we omit the proof.

error can be made arbitrarily small. In particular, when is a
constant, this implies that a constant number of linkage tests is
enough for detecting any hyperedge. Hence, from Lemma 1 a)
and b), it is straightforward to design a randomized algorithm
requiring a polynomial number of function evaluations. Testing
linkage independently for each subset of order at most induces
a randomized algorithm requiring function evalua-
tions, where the factor bounds the number of subsets to
be tested and the factor guarantees to bound a given
constant error probability.

Lemma 1 c) describes an important property that a linkage
graph should have: a subset of cannot be a hyperedge if
there exists a nonempty subset of that is not a hyperedge.
Suppose that is a pseudo-Boolean function and is a -order
subset of for . We call a -order hyperedge candi-
date of if every -order subset of is a hyperedge of

. Lemma 1 c) implies that cannot be a hyperedge if is
not a hyperedge candidate and it is thus enough to investigate
only the hyperedge candidates in detecting hyperedges. Based
on this observation, Heckendorn and Wright [24] proposed a
randomized algorithm that performs linkage test only for the
hyperedge candidates. Fig. 2 describes the main idea of the al-
gorithm of Heckendorn and Wright. In this paper, we call it the
hyperedge-candidate-based linkage discovery algorithm (HCA)
in order to emphasize the role of the hyperedge candidates in the
algorithm.

HCA first detects the first-order hyperedges by investigating
all the first-order subsets of . Then, in order to discover the
hyperedges of higher order, it performs linkage test for the hy-
peredge candidates that have been identified from the informa-
tion of the hyperedges of lower order. To analyze the perfor-
mance of HCA, Heckendorn and Wright considered the uniform
density model with replacement . Under the model

with and constant , they showed that,
for any constant , HCA finds the linkage graph of a ran-
domly generated function in function evaluations
on average with error probability at most .
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B. Finding Walsh Coefficients

Walsh transform is a Fourier transform for the space of
pseudo-Boolean functions in which a pseudo-Boolean function
is represented as a linear combination of basis functions
called Walsh functions [35]. For each subset of , the Walsh
function corresponding to , , is defined as

where represents the th bit value in . If we define an inner
product of two pseudo-Boolean functions and as

the set of Walsh functions becomes an or-
thonormal basis of the space of pseudo-Boolean functions.
Hence, a pseudo-Boolean function can be represented as

where is called the Walsh coefficient corre-
sponding to . Specifically, if and for
any is called a maximal nonzero Walsh coeffi-
cient of . We refer to [36] for surveys of the properties of Walsh
functions and Walsh transform in the space of pseudo-Boolean
functions.

Heckendorn and Wright [24] provided a number of results to
show the relation between the linkage test function and Walsh
coefficients. Some of them are summarized in the following
lemma.

Lemma 2: Suppose that is a pseudo-Boolean function de-
fined on . Then, the following holds.

a) For a subset of , is a maximal nonzero Walsh
coefficient of if and only if is a maximal hyperedge
of .

b) For a maximal hyperedge

c) For a subset of

d) For subsets and of with

The proof of Lemma 2 can be found in [24].
Suppose that the linkage graph of is given. Lemma 2 a)

says that the subsets of with maximal nonzero Walsh coef-
ficients are the maximal hyperedges. Thus, from Lemma 2 b),
the maximal nonzero Walsh coefficients of are found by eval-
uating the linkage test function at the zero string for each max-
imal hyperedge. Once the maximal nonzero Walsh coefficients
are found, the Walsh coefficients corresponding to the subsets of
lower orders can be found by successively applying Lemma 2 c).
Lemma 2 d) shows that the function evaluations for the Walsh

coefficients corresponding to the subsets of lower orders have al-
ready been performed in the process of computing the maximal
nonzero Walsh coefficients. Hence, if is -bounded and is
the number of maximal hyperedges in additional
function evaluations are enough to find the Walsh coefficients of

. In the case that is a constant independent of , this implies
that an upper bound for discovering the linkage graph is valid as
an upper bound for finding Walsh coefficients if the bound for
discovering linkage graph is . Based on these arguments
combined with the results for linkage discovery, Heckendorn
and Wright showed that, under the uniform density model with
replacement for and constant , the
Walsh coefficients of a randomly generated function can be
found in function evaluations on average.

III. LOWER BOUND FOR LINKAGE DISCOVERY

In this section, we prove Theorem 1. The main tool for the
analysis is Yao’s minimax principle [26], [33], which is stated
as follows.

Proposition 1 (Yao’s Minimax Principle): Consider a com-
plexity model for computing a function . Let be the
minimum complexity over all randomized algorithms that, for
all input , compute with error probability at most .
Given a distribution on the inputs, let be the minimum
complexity over all deterministic algorithms that correctly com-
pute on a fraction of at least of all inputs with respect
to . Then

In the context of linkage discovery, Yao’s minimax principle
may be restated as follows.

Corollary 1: Suppose that is a set of pseudo-Boolean func-
tions. Let be the minimum number of function evalua-
tions by a randomized algorithm that, for any , finds
with error probability at most . Given a distribution on , let

be the minimum number of function evaluations by a de-
terministic algorithm that, for a function sampled according
to , finds with error probability at most . Then

Recall that is the set of -bounded pseudo-Boolean
functions defined on whose linkage graphs have max-
imal hyperedges. We use Corollary 1 to obtain a lower bound for
linkage discovery.

Lemma 3: Given , any randomized algorithm that,
for any , finds with error probability at most

requires at least

function evaluations provided that .
Proof: To prove the lemma, we define a probability distri-

bution on the set . Then, when a function is given
according to , it is shown that any deterministic algorithm re-
quires at least
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function evaluations to find with error probability at most .
Lemma 3 follows from Corollary 1.

Let be the set of all ’s of the form
, where the ’s are

distinct -order subsets of . For each , we assign
a -bounded pseudo-Boolean function so that forms
exactly the set of maximal hyperedges of . Suppose
that and for

. Define as
and let

The definition of the linkage test function implies that, for any

For any for and thus
. Note that

for all , where denotes the string consisting of ones.
Also, for all , for any
such that for all . Thus, by Lemma 1, we see that

forms exactly the set of maximal hy-
peredges of .

Now we define as the uniform distribution over the set
. Then, consider a deterministic algorithm that

takes a pseudo-Boolean function according to as an input
and outputs . Suppose that performs at most function
evaluations. Because a function in has at most

values that are between 0 and , there are at most
different combinations of function values that gets from the
functions in . Also, is a deterministic algorithm
and thus the output of is uniquely determined by a combina-
tion of function values. Hence, has at most different
outputs. Because ’s for have different linkage graphs
from one another, the output of may be correct for at most

inputs from . From the fact that is the
uniform distribution over , we have

outputs correctly

Because

the probability over that outputs correctly is less than
unless

This completes the proof.
Now, suppose that is a constant independent of , and

for some constant . Then, Stirling’s formula [37]
implies that

For a constant

and Theorem 1 follows from Lemma 3.

IV. UPPER BOUND FOR LINKAGE DISCOVERY

The number of function evaluations by HCA is proportional
to the number of hyperedge candidates appearing in the process
of running HCA. Thus, to obtain a good upper bound for the
number of function evaluations by HCA, it is critical to count
the number of such hyperedge candidates as tightly as possible.
The Kruskal–Katona theorem, which was proved independently
by Kruskal [27] and Katona [28], is useful for the following pur-
pose. Given a collection of -order subsets, it gives a tight lower
bound for the number of -order subsets included in the
-order subsets. The original version of the theorem is some-

what complicated, however, we use the version of Lovász [38],
which is slightly weaker but easier to handle. In the following,
the generalized binomial coefficient for a real number and
a positive integer is defined as

Let for any real number by convention.
Theorem 4 (Kruskal–Katona): Suppose that is a collection

of -order subsets of and , where is a real number
with . Then, the number of -order subsets of

that are included in a -order subset in is at least .
Lemma 4: Suppose that a hypergraph has -order

hyperedges for . Then, the number of -order hyperedge
candidates in is at most .

Proof: Let , where is a real number with
, and denote by the number of -order hy-

peredge candidates in . We first prove that by
contradiction. Suppose that . The Kruskal–Katona
theorem implies that there are more than -order
subsets of that are included in a -order hyperedge candi-
date of . Because every -order subset of a -order hy-
peredge candidate is a -order hyperedge by the definition
of a hyperedge candidate, has more than -order
hyperedges, which is a contradiction.

From the fact that
and so
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Lemma 5: Suppose that is a -bounded pseudo-Boolean
function defined on and the number of maximal hyper-
edges in is . Then, HCA finds the linkage graph in

function evaluations with error probability at most .
Proof: We first bound the number of function evaluations

by HCA. Let

Computing the value of for a first-order subset re-
quires two function evaluations. Because there are first-order
subsets of , the number of function evaluations in identifying
the first-order hyperedges is . Consider the number of hy-
peredge candidates appearing in the process of running HCA.
For , the number of -order hyperedges is at
most , which is the number of all possible -order
subsets of . Because the number of maximal hyperedges is

and every -order hyperedge is contained in a maximal
hyperedge, the number of -order hyperedges is at most

as well. Hence, the number of -order hyperedges
is

and, by Lemma 4, the number of -order hyperedge candidates
is

Because computing the value of for a -order subset
requires function evaluations, the number of function eval-

uations in identifying the -order hyperedges is thus

Hence, the total number of function evaluations by HCA is

(1)
From the fact that

, the proof for the number of function evaluations
is completed.

Now, we complete the proof of the theorem by bounding the
probability that HCA works incorrectly. Note that

HCA is incorrect is not detected

(2)

For a -order hyperedge is not detected
by Lemma 1 and so applying

union bound to (2) gives

HCA is incorrect

is not detected

From the facts that and

HCA is incorrect

(3)

By Taylor expansion, and so
. Hence

and, from inequality (3)

HCA is incorrect

Now, we prove Theorem 2. Suppose that is a constant in-
dependent of , and for a nonnegative integer
and . Note that

for . The conditions that and is constant
imply that

for . From these facts, we see that

if

if

Hence

(4)

Because for constant , from (1) and (4), the total
number of function evaluations by HCA is with
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. This completes
the proof of Theorem 2.

V. BEHAVIORS ON RANDOM MODELS

If a fitness function is generated from
, or , it is clear that

is -bounded. Thus, Lemma 5 guarantees that HCA finds
the linkage graph of with a bounded error. In the following
sections, we show that the number of function evaluations
by HCA on the random models is generally smaller than the
bound for the worst case.

A. Uniform Probability Model

Lemma 6: Suppose that is generated from and
. For a -order subset of , the probability that is a

hyperedge candidate of is at most

Proof: We see that is a hyperedge candidate if and only
if is a hyperedge or is not a hyperedge but a hyperedge
candidate. First, consider the case that is a hyperedge. De-
note by the collection of -order subsets of including

. Then, the probability that is a hyperedge is at most the
probability that at least one -order subset in is chosen.
Because the size of is and each -order subset is
chosen with probability and independently of the others, the
probability that is a hyperedge is at most

(5)

Now, consider the condition that is not a hyperedge. For each
-order subset of , denote by the collection

of -order subsets of including but not . Then, the
probability that is a hyperedge candidate, conditioned that

is not a hyperedge, is at most the probability that at least
one -order subset in is chosen for each . Because

’s are disjoint, the conditional probability is at most

(6)

The probability that is not a hyperedge is at most one and so
the probability that is a hyperedge candidate is at most

from (5) and (6).
Lemma 7: Suppose that is generated from . Then,

HCA finds the linkage graph in

function evaluations on average with error probability at most .
Proof: Letting

the expected number of function evaluations by HCA is

by using Lemma 6 and linearity of expectation. The proof fol-
lows by the fact that .

Proposition 2: Suppose that is generated from
is a constant independent of , and for a non-
negative integer and . Then, HCA finds the linkage
graph in function evaluations on average with
error probability at most , where .

Proof: For , it is trivially true that
and . Because is

fixed, for

and

by plugging into

and using the fact that when and
. Thus

and

Hence, from Lemma 7, the expected number of function evalu-
ations by HCA is

The proof follows by the facts that

and .
Let be any positive valued function such that

. When is a constant independent of
, Proposition 2 combined with Markov inequality [33] implies

that the number of function evaluations of HCA to guarantee the
error probability at most is almost always ,
where . By applying the second
moment method [33], it is possible to obtain a stronger result
in which the term is removed.

Theorem 5 (Theorem 3 for the Uniform Probability Model):
Suppose that is generated from is a constant in-
dependent of , and for a nonnegative in-
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teger and . Then, for any constant ,
the number of function evaluations of HCA to guarantee the
error probability at most is almost always , where

.
Proof: See the Appendix.

B. Uniform Density Models

We first consider the number of function evaluations by HCA
for a fitness function generated from the uniform density model
without replacement. As in the uniform probability model, we
start with the lemma for the probability that a hyperedge candi-
date occurs. To prove the lemma, the relation between the uni-
form probability model and the uniform density model without
replacement is exploited.

Lemma 8: Suppose that is generated from and
. For a -order subset of , the probability that

is a hyperedge candidate of is for any
constant , where

Proof: Let be the event that a -order subset including
is chosen or, for each -order subset of , a

-order subset including is chosen when is generated
from . Because the probability that is a hyperedge
candidate is at most the probability that the event occurs,
it is enough to show that

Let

and consider the uniform probability model . Let
be the event that a -order subset including is chosen or, for
each -order subset of , a -order subset including

is chosen from and let be the number of -order
subsets of chosen from . Then

Because for and

Hence

(7)

As shown in the proof of Lemma 6

By plugging into

and using the fact that when and
, we see that

and

Thus

(8)

Because has the binomial distribution with parameters
and

then

(9)

by Chernoff bound [33]. Therefore,
from (7)–(9).

Lemma 9: Suppose that is generated from .
Then, for an arbitrarily small constant , HCA finds the
linkage graph in

function evaluations on average with error probability at most .
Proof: Let
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For arbitrarily small , the expected number of function
evaluations by HCA is

by using Lemma 8 and linearity of expectation. The proof fol-
lows by the fact that .

Proposition 3: Suppose that is generated from
is a constant independent of , and

for a nonnegative integer and . Then,
HCA finds the linkage graph in function
evaluations on average with error probability at most , where

.
Proof: Suppose that . Because and

is constant, the number of maximal hyperedges in is
with probability 1. From Theorem 2, the number of function
evaluations by HCA is with Probability 1
and the proposition follows.

Now, suppose that and is an arbitrary posi-
tive constant. For , it is trivially true that

and for
constant . Because with and is constant,

is exponentially small in and so

for . Hence

From Lemma 9, the expected number of function evaluations by
HCA is

The proof follows by the facts that

and .
By coupling with the result for , Theorem 3 for the

uniform density model without replacement is obtained.
Theorem 6 (Theorem 3 for the Uniform Density Model

Without Replacement): Suppose that is generated
from is a constant independent of , and

for a nonnegative integer and .
Then, for any constant , the number of function evalu-
ations of HCA to guarantee the error probability at most is
almost always , where .

Proof: See the Appendix.
Now, we consider the number of function evaluations by

HCA on the uniform density model with replacement. Based
on the relation between the uniform density models, the prob-
ability that a given subset is a hyperedge candidate is bounded
as follows.

Lemma 10: Suppose that is generated from
and . For a -order subset of , the probability that

is a hyperedge candidate of is for any
constant .

Proof: Let and be the events that a -order subset
including is chosen or, for each -order subset of

, a -order subset including is chosen from
and , respectively. The probability that is a hyper-
edge candidate when is generated from is at most
the value of . Because
as shown in the proof of Lemma 8, it is enough to show that

.
Let be the number of distinct -order subsets of chosen

from . Because
for and

Using Lemma 10, we have the following theorems on
. The proofs are omitted, which are analogous

to those of Lemma 9 and Proposition 3.
Lemma 11: Suppose that is generated from .

Then, for an arbitrarily small constant , HCA finds the
linkage graph in

function evaluations on average with error probability at most .
Proposition 4: Suppose that is generated from

is a constant independent of , and
for a nonnegative integer and . Then,

HCA finds the linkage graph in function
evaluations on average with error probability at most , where

.
By coupling with the result for , Theorem 3 for the

uniform density model with replacement is obtained.
Theorem 7 (Theorem 3 for the Uniform Density Model With

Replacement): Suppose that is generated from
is a constant independent of , and for a non-
negative integer and . Then, for any constant ,
the number of function evaluations of HCA to guarantee the
error probability at most is almost always , where

.
Proof: See the Appendix.

VI. REMARKS ON FINDING WALSH COEFFICIENTS

Suppose that is a pseudo-Boolean function and is the
number of maximal hyperedges in . As shown in Section II,
once is discovered, it is possible to find the Walsh coeffi-
cients of with additional function evaluations from
Lemma 2. In the case that is a constant independent of ,
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this means that the proposed upper bounds for discovering the
linkage graph (Theorems 2 and 3) are also valid as the upper
bounds for finding Walsh coefficients. Conversely, suppose that
all the Walsh coefficients are known for a pseudo-Boolean func-
tion . Then, from the maximal nonzero Walsh coefficients of

, maximal hyperedges of are automatically identified by
Lemma 2 a). The remaining hyperedges are discovered from
the maximal hyperedges by Lemma 1 c). This implies that the
number of function evaluations required for finding Walsh co-
efficients is lower bounded by the number of function evalua-
tions required for discovering the linkage graph. Thus, we see
that the proposed lower bound for discovering the linkage graph
(Theorem 1) is also valid as the lower bound for finding Walsh
coefficients.

VII. DISCUSSION AND FUTURE WORK

The problem of discovering linkage structures was investi-
gated in the black box scenario. Based on a formal definition of
linkage, the lower and upper bounds for linkage discovery were
rigorously analyzed. The lower bounds that we obtained are the
first results for linkage discovery. They may serve as a basis
for analyzing and evaluating evolutionary algorithms based on
linkage discovery. The upper bounds imply that linkage dis-
covery and even Walsh analysis can be accomplished efficiently
for fitness functions of many NP-hard problems. Through the
investigation on random models, it was shown that linkage dis-
covery and Walsh analysis are achieved more efficiently in typ-
ical situations.

Although the lower and upper bounds are within a reasonable
factor, we consider that there remains room for further improve-
ment, in particular, for the upper bounds. Recently, Choi et al.
[39] showed that the problem for checking the linear separa-
bility of a two-bounded function is solved in a constant number
of function evaluations by a method perturbing a group of bits
simultaneously. For bounded functions, the effectiveness and ef-
ficiency of a group-perturbation method were empirically veri-
fied in [40]. Generalizing the linkage test so as to permit group
perturbations seems to be a promising approach for more effi-
cient linkage discovery. We are currently working on improving
the upper bounds for linkage discovery in this direction.

APPENDIX

Proof of Theorem 5: Suppose that . If , the
number of maximal hyperedges in is almost always
by Chernoff bound [33]. From Theorem 2, the number of func-
tion evaluations by HCA is almost always and the
theorem follows. If , the number of maximal hy-
peredges in is almost always by Chernoff bound.
From Theorem 2, the number of function evaluations by HCA
is almost always and the theorem follows.

Now, we assume that in the rest of the proof. Let ,
and denote the numbers of hyperedge candidates, hyperedge
candidates that are indeed hyperedges, and hyperedge candi-
dates that are not hyperedges, respectively, in . It is clear that

.

Lemma 12: Suppose that for . Then,
there is a constant such that .

Proof: For each -order subset of , set an indicator
random variable such that if is not a hy-
peredge but a hyperedge candidate of and other-
wise. If we let be the number of -order hyperedge candi-
dates of that are not hyperedges, then and

. We prove that there exists a positive constant
such that for each . Then, by
letting , the proof of the lemma follows.

For , it is trivially true that
and so we may choose a positive constant such that

. Consider the case that .
For each , we have

(10)

and

From the facts that and
and thus we may choose

a positive constant such that for sufficiently
large . Letting , by Chebyshev inequality [33]

(11)

Because , the following holds:

(12)

We first consider the variance of .
Fact 1: Suppose that . For each -order subset

Proof: From (10)

Now, consider the covariance of and . Suppose that
and are -order subsets of and , respectively.
Then, is called a dependent pair in and if

and . More specifically, a dependent
pair is called of type 1 if and it is
called of type 2 otherwise.
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Fact 2: Suppose that and . For two
-order subsets and of such that

where with
and

.
Proof: Note that there are dependent pairs in
and among which pairs are of type 1 and

pairs are of type 2. Label the dependent pairs, say
for . For each dependent pair

, set an indicator random variable such that
if is included in a -order subset chosen in the course
of generating and otherwise. Let .

The value of and is decomposed in
terms of the value of as follows:

and

and (13)

Let be the collection of the -order subsets of
. Suppose that . We have (14),

shown at the bottom of the page. Let be the collection
of the -order subsets, ’s, of or such that

for all . Because there are at least
-order subsets that are included in or and

at most two -order subsets are concerned with each
dependent pair, we see that .
For , set an indicator random variable such that

if a -order subset, which includes but includes
neither nor , is chosen in the course of generating
and otherwise. Because ’s with and ’s
with are probabilistically independent

and

and

Because , for each

If is of type and

If is of type and

For , consider the case that . There
are -order subsets that include but include
neither nor . Thus

For the case that , we have
in a similar way. Let .

Because there are at most dependent pairs of type 1 among
the pairs, ’s with , and , we
have (15), shown at the bottom of the page. For the exponent of

in (15), because , we see that

Thus

and

for each and, from (14), we have

and

(16)

for .
Now, suppose that . In this case

and

and and

and (14)

and (15)
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From the fact that

when , and , we have

and

for each and, from (14)

and

(17)

for .
From (13)

and

and

and

and

Because

and

and

and

when

and

(18)
and the lemma follows from (16)–(18).

Fact 3: Suppose that . For two -order subsets
and of such that

Proof: In the same manner as in the proof of Fact 2, we
have (19), shown at the bottom of the page, where

. Plugging into (19)

and

if
if

When and
and ,

and so

and

for all . Thus

and

and

and

and

and

Because there are -order subsets and there
are -order subset pairs, ’s with

, from (12) and Facts 1–3

Because

To prove that , from (11), it is enough to
show that

approaches to zero as goes to infinity. To this end, we show
that both of and

are bounded above by a negative constant when
.

and
if

if
(19)
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Consider with . For
and so

Because when
has the maximum value at

. Because when
, we have

for all . From the fact that
and
and thus
for all . Therefore

(20)

for all .
Now, consider with . In the

case that

Because
when and

for , we
have for .
As shown in the above, and thus

for all . In the
case that and

Because for and

for all . Therefore, in both cases

(21)

for all .
From (20) and (21), we have

for all . Hence

Finally, when

which completes the proof of the lemma.
In a similar way, we have the following result for .

Lemma 13: Suppose that for . Then,
there is a constant such that .

Proof: The proof is analogous to that of Lemma 12 and it
is omitted.

From Lemmas 12 and 13, we have the following.
Lemma 14: Suppose that for . Then,

there is a constant such that .
Proof: From Lemmas 12 and 13, we may choose the pos-

itive constants and such that and
. Let . Then

Lemma 14 implies that the number of function evaluations
by HCA is almost always for .
Because , the theorem follows.

Proof of Theorem 6: Suppose that . Because
and is constant, the number of maximal hyperedges in

is with probability 1. From Theorem 2, the number
of function evaluations by HCA is with
probability 1 and the theorem follows.

Now, we assume that in the rest of the proof. Let be
the number of hyperedge candidates appearing in the process of
running HCA on . To prove the theorem, it is enough
to show that is almost always at most for some constant
, which is formalized as the following lemma.

Lemma 15: Suppose that for . Then,
there is a constant such that .

Proof: Let

and consider the uniform probability model . Let
be the number of -order subsets of chosen from
and let be the number of hyperedge candidates appearing in
the process of running HCA on . Then, for a constant

Because for
and

Hence

(22)
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From Lemma 14

(23)

for some constant . Because has the binomial distribution
with parameters and

and , by Chernoff bound [33]

(24)

Therefore, from (22)–(24)

for some constant , which completes the proof.
Proof of Theorem 7: Suppose that . Because

and is constant, the number of maximal hyperedges in
is with probability 1. From Theorem 2, the number

of function evaluations by HCA is with
probability 1 and the theorem follows.

Now, we assume that in the rest of the proof. Let be
the number of hyperedge candidates appearing in the process of
running HCA on . To prove the theorem, it is enough
to show that is almost always at most for some constant
. Let be the number of hyperedge candidates appearing in the

process of running HCA on and let be the number
of distinct -order subsets of chosen from . Fix a
positive constant . Note that

for and
. Thus

Because for some positive constant
from Lemma 15, we have
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