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ABSTRACT
In this paper, we propose a novel method for a sentence-level
answer-selection task that is a fundamental problem in natural
language processing. First, we explore the effect of additional in-
formation by adopting a pretrained language model to compute
the vector representation of the input text and by applying trans-
fer learning from a large-scale corpus. Second, we enhance the
compare-aggregate model by proposing a novel latent clustering
method to compute additional information within the target corpus
and by changing the objective function from listwise to pointwise.
To evaluate the performance of the proposed approaches, exper-
iments are performed with the WikiQA and TREC-QA datasets.
The empirical results demonstrate the superiority of our proposed
approach, which achieve state-of-the-art performance for both
datasets.

CCS CONCEPTS
• Information systems→ Question answering; • Computing
methodologies → Natural language processing.
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1 INTRODUCTION
Automatic question answering (QA) is a primary objective of ar-
tificial intelligence. Recently, research on this task has taken two
major directions based on the answer span considered by the model.
The first direction (i.e., the fine-grained approach) finds an exact
answer to a question within a given passage [7]. The second di-
rection (i.e., the coarse-level approach) is an information retrieval
(IR)-based approach that provides the most relevant sentence from
a given document in response to a question. In this study, we are
interested in building a model that computes a matching score
between two text inputs. In particular, our model is designed to
undertake an answer-selection task that chooses the sentence that
is most relevant to the question from a list of answer candidates.
This task has been extensively investigated by researchers because
it is a fundamental task that can be applied to other QA-related
tasks [1, 5, 9, 11, 12, 15].

However, most previous answer-selection studies have employed
small datasets [14, 17] compared with the large datasets employed
for other natural language processing (NLP) tasks [4, 7]. Therefore,
the exploration of sophisticated deep learning models for this task
is difficult.

To fill this gap, we conduct an intensive investigation with the
following directions to obtain the best performance in the answer-
selection task. First, we explore the effect of additional information
by adopting a pretrained language model (LM) to compute the vec-
tor representation of the input text. Recent studies have shown that
replacing the word-embedding layer with a pretrained language
model helps the model capture the contextual meaning of words
in the sentence [2, 6]. Following this study, we select an ELMo [6]
language model for this study. We investigate the applicability of
transfer learning (TL) using a large-scale corpus that is created
for a relevant-sentence-selection task (i.e., question-answering NLI
(QNLI) dataset [13]). Second, we further enhance one of the base-
line models, Comp-Clip [1] (refer to the discussion in 3.1), for
the target QA task by proposing a novel latent clustering (LC)
method. The LC method computes latent cluster information for
target samples by creating a latent memory space and calculating
the similarity between the sample and the memory. By an end-
to-end learning process with the answer-selection task, the LC
method assigns true-label question-answer pairs to similar clusters.
In this manner, a model will have further information for matching
sentence pairs, which increases the total model performance. Last,
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Figure 1: The architecture of the model. The dotted box on the right shows the process through which the latent-cluster
information is computed and added to the answer. This process is also performed in the question part but is omitted in the
figure. The latent memory is shared in both processes.

we explore the effect of different objective functions (listwise and
pointwise learning). In contrast to previous research [1], we ob-
serve that the pointwise learning approach performs better than the
listwise learning approach when we apply our proposed methods.
Extensive experiments are conducted to investigate the efficacy and
properties of the proposed methods and show the superiority of our
proposed approaches for achieving state-of-the-art performance
with the WikiQA and TREC-QA datasets.

2 RELATEDWORK
Researchers have investigated models based on neural networks
for question-answering tasks. One study employs a Siamese archi-
tecture that utilizes an encoder (e.g., RNN or CNN) to compute
vector representations of the question and the answer. The affinity
score is calculated based on these vector representations [4]. To
improve the model performance by enabling the use of information
from one sentence (e.g., a question or an answer) in computing
the representation of another sentence, researchers included the
attention mechanism in their models [8, 10, 16].

Another line of research includes the compare-aggregate frame-
work [15]. In this framework, first, vector representations of each
sentence are computed. Second, these representations are com-
pared. Last, the results are aggregated to calculate the matching
score between the question and the answer [1, 9, 12].

In this study, unlike the previous research, we employ a pre-
trained language model and a latent-cluster method to help the
model understand the information in the question and the answer.

3 METHODS
3.1 Comp-Clip Model
In this paper, we are interested in estimating the matching score
f (y |Q,A), where y, Q = {q1, ...,qn } and A = {a1, ...,am } represent

the label, the question and the answer, respectfully. We select the
model from [1], which is referred to as the Comp-Clip model, as
our baseline model. The model consists of the following four parts:
Context representation: The question Q ∈Rd×Q and answer
A ∈Rd×A, (where d is a dimensionality of word embedding and Q
and A are the length of the sequence in Q and A, respectively), are
processed to capture the contextual information and the word as
follows:

Q = σ (WiQ) ⊙ tanh(WuQ),

A = σ (WiA) ⊙ tanh(WuA),
(1)

where ⊙ denotes element-wise multiplication, and σ is the sigmoid
function. The W ∈Rl×d is the learned model parameter.
Attention: The soft alignment of each element in Q ∈Rl×Q and
A ∈Rl×A are calculated using dynamic-clip attention [1]. We obtain
the corresponding vectors HQ ∈Rl×A and HA ∈Rl×Q .

HQ = Q · softmax((WqQ)⊺A),

HA = A · softmax((WaA)⊺Q).
(2)

Comparison: A comparison function is used to match each word
in the question and answer to a corresponding attention-applied
vector representation:

CQ = A ⊙ HQ , (CQ ∈Rl×A),

CA = Q ⊙ HA, (CA ∈Rl×Q ),
(3)

where ⊙ denotes element-wise multiplication.
Aggregation: We aggregate the vectors from the comparison layer
using CNN [3] with n-types of filters and calculate the matching
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score between Q and A.

RQ = CNN(CQ ), RA = CNN(CA),

score = σ ([RQ ;RA]⊺W),
(4)

where [;] denotes concatenation of each vectorRQ ∈Rnl andRA ∈Rnl .
The W ∈R2nl×1 is the learned model parameter.

3.2 Proposed Approaches
To achieve the best performance in the answer-selection task, we
propose four approaches: adding a pretrained LM; adding the LC
information of each sentence as auxiliary knowledge; applying
TL to benefit from large-scale data; and modifying the objective
function from listwise to pointwise learning. Figure 1 depicts the
total architecture of the proposed model.

Pretrained Language Model (LM): Recent studies have shown
that replacing the word embedding layer with a pretrained LM
helps the model capture the contextual meaning of the words in the
sentence [2, 6]. We select an ELMo [6] language model and replace
the previous word embedding layer with the ELMomodel as follows:
LQ =ELMo(Q), LA =ELMo(A). These new representations—LQ and
LA—are substituted for Q and A, respectively, in equation (1).

Latent Clustering (LC) Method: We assume that extracting the
LC information of the text and using it as auxiliary information will
help the neural network model analyze the corpus. The dotted box
in figure 1 shows the proposed LCmethod.We create n-many latent
memory vectors M1:n and calculate the similarity between the
sentence representation and each latent memory vector. The latent-
cluster information of the sentence representation will be obtained
using a weighted sum of the latent memory vectors according to
the calculated similarity as follows:

p1:n = s⊺WM1:n ,

p1:k = k-max-pool(p1:n ),
α1:k = softmax(p1:k ),
MLC = ∑

kαkMk ,

(5)

where s ∈Rd is a sentence representation,M1:n ∈Rd ′×n indicates
the latent memory, and W∈Rd×d ′

is the learned model parameter.
We apply the LC method and extract cluster information from

each question and answer. This additional information is added to
each of the final representations in the comparison part (see 3.1) as
follows:

MQ
LC = f ((∑iqi )/n), qi ⊂ Q1:n ,

MA
LC = f ((∑iai )/m), ai ⊂ A1:m ,

CQ
new = [CQ ;MQ

LC], C
A
new = [CA;MA

LC],

(6)

where f is the LC method (in equation 5) and [;] denotes the con-
catenation of each vector. These new representations—CQ

new and
CA
new—are substituted for CQ and CA in equation (4). Note that we

average word-embedding to obtain sentence representation in the
previous equation.

Transfer Learning (TL): To observe the efficacy in a large dataset,
we apply transfer learning using the question-answeringNLI (QNLI)
corpus [13]. We train the CompClip model with the QNLI corpus

Table 1: Properties of the dataset.

Dataset Listwise pairs Pointwise pairs

train dev test train dev test

WikiQA 873 126 243 8.6k 1.1k 2.3k
TREC-QA 1.2k 65 68 53k 1.1k 1.4k
QNLI 86k 10k - 428k 169k -

and then fine-tune the model with target corpora, such as the Wik-
iQA [17] and TREC-QA [14] datasets.

Pointwise Learning to Rank: Previous research adopts a list-
wise learning approach. With a dataset that consists of a ques-
tion, Q, a related answer set, A = {A1, ...,AN }, and a target label,
y = {y1, ...,yN }, a matching score is computed using equation (4).
This approach applies KL-divergence loss to train the model as
follows:

scorei = model(Q,Ai ),
S = softmax([score1, ..., scorei ]),
loss = ∑N

n=1KL(Sn | |yn ),
(7)

where i is the number of answer candidates for the given question
and N is the total number of samples employed during training.

In contrast, we pair each answer candidate to the question and
compute the cross-entropy loss to train the model as follows:

loss = −∑N
n=1 yn log (scoren ), (8)

where N is the total number of samples used during training. Using
this approach, the number of training instances for a single iteration
increases, as shown in table 1.

4 EMPIRICAL RESULTS
We regard all tasks as relevant answer selections for the given
questions. Following the previous study, we report the model per-
formance as the mean average precision (MAP) and the mean recip-
rocal rank (MRR). To test the performance of the model, we utilize
the TREC-QA, WikiQA and QNLI datasets [13, 14, 17].

4.1 Comparison with Other Methods
Table 2 shows the model performance for the WikiQA and TREC-
QA datasets. For the Compare-Aggregate (2016), Comp-Clip (2017),
IWAN (2017) and IWAN+sCARNN (2018) models, we measure the
performance on theWikiQA dataset using the authors’ implementa-
tions (marked by * in the table). Unlike previous studies, we report
our results for both the dev dataset and the test dataset because we
note a performance gap between these datasets. While training the
model, we apply an early stop that is based on the performance of
the dev dataset and measure the performance on the test dataset.
Because Comp-Clip [1] is our baseline model, we implement it
from scratch and achieve a performance that is similar to that of
the original paper.
WikiQA: For theWikiQA dataset, the pointwise learning approach
shows a better performance than the listwise learning approach.We
combine LM with the base model (Comp-Clip +LM) and observe
a significant improvement in performance in terms of MAP (0.714
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Table 2: Model performance (the top 3 scores are marked in bold for each task). We evaluate model [1, 9, 12, 15] on theWikiQA
corpus using author’s implementation (marked by *). For TREC-QA case, we present reported results in the original papers.

Model
WikiQA TREC-QA

MAP MRR MAP MRR
dev test dev test dev test dev test

Compare-Aggregate (2017) [15] 0.743* 0.699* 0.754* 0.708* - - - -
Comp-Clip (2017) [1] 0.732* 0.718* 0.738* 0.732* - 0.821 - 0.899
IWAN (2017) [9] 0.738* 0.692* 0.749* 0.705* - 0.822 - 0.899
IWAN + sCARNN (2018) [12] 0.719* 0.716* 0.729* 0.722* - 0.829 - 0.875
MCAN (2018) [11] - - - - - 0.838 - 0.904
Question Classification (2018) [5] - - - - - 0.865 - 0.904
Listwise Learning to Rank
Comp-Clip (our implementation) 0.756 0.708 0.766 0.725 0.750 0.744 0.805 0.791
Comp-Clip (our implementation) + LM 0.783 0.748 0.791 0.768 0.825 0.823 0.870 0.868
Comp-Clip (our implementation) + LM + LC 0.787 0.759 0.793 0.772 0.841 0.832 0.877 0.880
Comp-Clip (our implementation) + LM + LC +TL 0.822 0.830 0.836 0.841 0.866 0.848 0.911 0.902
Pointwise Learning to Rank
Comp-Clip (our implementation) 0.776 0.714 0.784 0.732 0.866 0.835 0.933 0.877
Comp-Clip (our implementation) + LM 0.785 0.746 0.789 0.762 0.872 0.850 0.930 0.898
Comp-Clip (our implementation) + LM + LC 0.782 0.764 0.785 0.784 0.879 0.868 0.942 0.928
Comp-Clip (our implementation) + LM + LC +TL 0.842 0.834 0.845 0.848 0.913 0.875 0.977 0.940

to 0.746 absolute). When we add the LCmethod (Comp-Clip +LM
+LC), the best previous results are surpassed in terms of MAP (0.718
to 0.764 absolute). We achieve a vast improvement in performance
in terms of the MAP (0.764 to 0.834 absolute) by including the TL
approach (Comp-Clip + LM + LC + TL).
TREC-QA: The pointwise learning approach also shows excellent
performance with the TREC-QA dataset. As shown in table 1, the
TREC-QA dataset has a larger number of answer candidates per
question. We assume that this characteristic prevents the model
from handling the dataset with a listwise learning approach. As
in the WikiQA case, we achieve additional performance gains in
terms of the MAP as we apply LM, LC, and TL (0.850, 0.868 and
0.875, respectively). In particular, our model outperforms the best
previous result when we add LC method, (Comp-Clip +LM +LC)
in terms of MAP (0.865 to 0.868).

5 CONCLUSION
In this study, our proposed method achieves state-of-the-art per-
formance for both the WikiQA dataset and TREC-QA dataset. We
show that leveraging a large amount of data is crucial for capturing
the contextual representation of input text. In addition, we show
that the proposed latent clustering method with a pointwise objec-
tive function significantly improves the model performance in the
sentence-level QA task.
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