
Contextual-CNN: A Novel Architecture Capturing
Unified Meaning for Sentence Classification

Joongbo Shin, Yanghoon Kim, Seunghyun Yoon and Kyomin Jung
Dept. of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

{jbshin, ad26kr, mysmilesh, kjung}@snu.ac.kr

Abstract—In this paper, we focus on the architecture of the
convolutional neural network (CNN) for sentence classification.
For understanding natural language, context in the sentence is
important information for grasping the word sense. However,
traditional CNN’s feed-forward architecture is insufficient to
reflect this factor. To solve this limitation, we propose a contextual
CNN (C-CNN) for better text understanding by adding recurrent
connection to the convolutional layer. This architecture helps C-
CNN units to be modulated over time with their neighboring
units, thus the model integrates word meanings with surrounding
information within the same layer. We evaluate our model on
sentence-level sentiment prediction tasks and question catego-
rization task. The C-CNN achieves state-of-the-art performances
on fine-grained sentiment prediction and question categorization.

Index Terms—deep learning, convolutional neural network,
natural language processing, sentence classification

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved great
successes in computer vision, and this prosperity has been
extended to natural language processing (NLP) in recent years.
Without using well-studied classical hand-crafted features in
natural language domain, CNN based models have shown the
state-of-the-art performances on sentence classification tasks
[1]–[4]. These achievements are mainly due to the CNN’s
power of extracting local features from the data by using
convolution layers and accumulating global information by
building hierarchical structures.

Contextual information in a sentence is significant to dis-
ambiguate the meaning of words. For instance, the following
two sentences “I slept deeply at night.” and “I slept deeply
halfway through this movie.” have the same phrase “slept
deeply” which should be recognized differently in terms of
sentimental meaning. While CNN’s hierarchical layers can
deal with low-to-high level information, it has limitations
in capturing contextual meaning of words within the whole
sentence because its architecture relies on the feed-forward
hierarchical path, particularly in the inference stage.

K. Jung is with the Department of Electrical and Computer Engineer-
ing, ASRI, Seoul National University, Seoul, Korea. This work was sup-
ported by Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education(NRF-
2016M3C4A7952587), the Ministry of Trade, Industry & Energy(MOTIE,
Korea) under Industrial Technology Innovation Program(No.10073144), and
the Brain Korea 21 Plus Project.

I

slept

deeply

at

night

.

sentence matrix

6x4

Fig. 1. Illustration of an C-CNN architecture for assigning the sentence to
the one of two labels. The color is assigned to the units corresponding to the
filter, and bold boxes in features are pooled units. If one omitting the dashed
arrows for recurrent connection, this figure shows one layer CNN model for
sentence classification.

For better understanding sentences, we propose a novel
CNN-based scheme that properly integrates feature extraction
and context modulation. An example of the proposed model,
contextual CNN (C-CNN for convenience) is illustrated in
Fig. 1. The key module of our model consists of original con-
volution and additional recurrence function. This architecture
allows C-CNN units to be updated according to their neigh-
boring units, hence the model secure the ability of context
modulation within the same layer. At the first layer of C-CNN,
right after the sentence matrix, feature maps will represent a
set of new word vectors updated by original words, taking
more peripheral contexts into account over time. Moreover,
non-linear interactions of words within a local context can
be obtained by recurring of the convolution with non-linear
activation function. It is worth noting that the model’s revising
process at word level is also available in the inference stage,
which is important to understand the text as human do.

We evaluate the proposed model on sentence-level text
classification tasks, including standard sentiment prediction
benchmark Stanford Sentiment Treebank and question catego-



rization dataset TREC. The C-CNN achieves state-of-the-art
accuracy 52.3% on the fine-grained sentiment prediction task
(5-class) and 95.2% on the TREC question categorization task
(6-class). To verify the C-CNN’s performance over our CNN
baselines, we conduct additional experiments on the sentiment
prediction dataset. Experimental results demonstrate that the
proposed model has an advanced architecture for NLP tasks.

II. RELATED WORKS

A. CNN-based models for text understanding

Many prior CNN-based works have been proposed for the
sentence-level text classification tasks, and they have achieved
excellent performances without hand-crafted features. Propa-
gating extracted features from convolution layer to the logistic
regression layer needs an encoding process which converts
a sentence of arbitrary length to a fixed sized vector. A
common approach for this process is max-pooling over all
features (1-max pooling for convenience) detected by a sliding
convolution filters on a given sentence [1], [2]. However,
stacking convolution layers, which is essential to represent a
hierarchical structure of a sentence, cannot be obtained with
1-max pooling strategy.

To overcome this limitation, k-max pooling is proposed,
which selects k most active features with preserved order. To
make parameter k sensitive to the length of the sentence and
the depth of the network, a dynamic k-max pooling is proposed
in [3]. These pooling strategies allow CNN architecture to
have multiple convolution layers for extracting high-level ab-
stract features. In order to get higher classification accuracies,
extensive experiments with different model architectures are
conducted in [4]. They adopt hybrid word embedding layer
by utilizing pretrained word embeddings like GloVe [5] to
resolve out-of-vocabulary problem. They also apply different-
sized filters for better phrase detection, and some tricks for
pretraining the networks.

In [6], CNN architecture is revised to get non-linear inter-
actions between words and non-sequential convolution. They
try to capture the non-consecutive n-grams, and achieve good
performance in several text classification tasks.

Those CNN-based models have tried to better represent a
sentence, however, none of them applies context modulation
within a sentence while reading the text.

B. Recurrent and Convolutional Neural Networks

Our study of recurrent connections in convolutional layer
is inspired by a recently proposed model which shows better
performance in image understanding [7]. However, we applied
recurrent connections between convolution layers for capturing
expanded contextual meaning of the text, thus building a novel
architecture for sentence classification task.

It is worthwhile to mention that there is another work for
capturing contextual meaning of words by using recurrent and
convolutional neural networks for text classification [8]. They
used two kinds of neural networks separately, however, we
combined both recurrence and convolution into one layer that
is recurrently applying convolution operation.

III. MODEL

A. CNN for Sentence Classification

In this section, we explain the elements of CNN for sentence
classification as preliminaries for our study. Fig. 1 without
dashed arrows shows an example of one layer CNN architec-
ture.

Let X ∈ Rn×d be the input sentence matrix, which is
concatenation of n word vectors of dimension d (e.g., n = 6
and d = 4 in Fig. 1). In representing sentence using CNN,
there is a common problem that input sequence length is
various while the network generally needs fixed size output.
Here we use the most standard remedy of fixing the input
sequence to the length n0: Any word exceeding length n0 is
ignored, and sentences shorter than the length are filled with
all-zero vectors as well as out-of-vocabulary words.

A convolutional layer (CL) computes 1-D convolution over
the sentence matrix with its k filters (or kernels) denoted by
the matrix Wc

j ∈ Rm×d, which is a jth filter with region size
m (e.g., k = 4 and m = 3 in Fig. 1). An output of the layer
located at ith index on the jth feature map is given by

zi,j = f(Wc
j ·X[i] + bcj), (1)

where X[i] ∈ Rm×d is a sub-matrix of the sentence matrix
centered at ith position, bj is the bias term, and f is the non-
linear activation function such as rectified linear unit (ReLU).
In this temporal convolution, we use stride 1 as other CNN
based sentence classifiers do and pad zero vectors to the input,
so the output of the convolution is Z ∈ Rn×k.

To build up the layers for the hierarchical modeling, 1-
D max pooling operation is applied to each feature map
corresponding to particular filter with the s × 1 pooling
size, hence the resulting output will be Z′ ∈ Rn

s×k (this
operation is not represented in Fig. 1). Stacking L CLs with
1-D max pooling allows the CNN to capture more abstract
meaning of the sentence. For the last convoluional layer right
before the logistic regression, we apply 1-max pooling over
each feature map, then we get a vector representing sentence
[y1, . . . , yk] = y ∈ Rk, where yj = max(z:,j) [1] (in
Fig. 1, bold boxes represent maximum value in each feature
map). After the 1-max pooling, we get the fixed size vector
representation of the input sentence.

The sentence representation is forwarded to logistic regres-
sion layer for assigning it to one of C categories (e.g., C = 2
in Fig. 1) with weight Wh ∈ Rk×C and bias bh. Following
standard practices, our model is trained by minimizing the
cross-entropy loss of predictions on a given training data.

B. C-CNN for Sentence Classification

The key module of C-CNN is the contextual convolutional
layer (C-CL) having recurrent structure. The module repeat-
edly computes convolution over the sentence matrix thereby
its output updates itself over time. An output unit located at
ith index of the jth feature map at time step t of the layer is
given by:

zi,j(t) = f(xi,j +Wc
j · Z[i](t− 1) + bcj), (2)



I

slept

deeply

at

night

.

Fig. 2. The module of C-CNN is unfolded for T = 2 time steps.

where Z[i](t − 1) ∈ Rm×d is a sub-matrix of the recurrent
input, which is the previous output of the same layer, and the
other variables and parameters are just the same as those in
the previous section. The output of C-CL will be forwarded
to the next layer after the finite iteration step T , and the other
modules like pooling and logistic regression form the overall
architecture together.

This lateral connection facilitates context modulation within
the same layer, which is key idea of this work. Equation (2)
and Fig. 2 represent the dynamic behavior of the proposed
module. One of interesting points is that a state of the C-CL
evolves over time while the input sentence matrix is static.
The C-CL reinterprets meaning of the words from their sur-
roundings, which cannot be obtained from the original CNN.
The context region for updating current position depends on
filter size m and predefined iteration step T : (m − 1)T + 1.
After passing through the non-linear activation function and
summing with the input, the C-CL attains non-linear relation
of the words thus enriching meaning of the words.

We now describe the additional components of the tradi-
tional CL in our C-CNN maintaining the other elements in the
previous section. Fig. 1 with recurrence shows an example of
one layer C-CNN architecture.

By excluding the first term in (2), context modulation also
can be formed

zi,j(t) = f(Wc
j · Z[i](t− 1) + bcj).

We named this module as recurrent convolutional layer (R-
CL), and the network composed of R-CLs as recurrent CNN
(R-CNN). This is equivalent to (1) for t = 1 when Z is
initialized as input matrix. Also, R-CNN with T iteration steps
can be shown as T layers CNN without 1-D max pooling layer
having shared filter weights across the layers.

For all kinds of convolutional layer, after computing the
convolution, the local response normalization tailored for our
task is used in all implementations in order to prevent the
states from exploding:

g(zi,j(t)) =
zi,j(t)(

K + α
min(k,j+(N−1)/2)∑

j′=max(0,j−(N−1)/2)
zi,j′(t)2

)β ,

where the sum runs over N adjacent feature maps, and the
constants K, α, and β are hyper-parameters of controlling the
amplitude of normalization.

IV. EXPERIMENT

A. Datasets

We evaluate the proposed model on Sentiment Stan-
ford Treebank benchmark (SST)1. SST-5 consists of movie
review with find-grained labels (very positive, positive,
neutral, negative, very negative). Following the previous
works, we use standard 8544/1101/2210 split for train-
ing/development/testing, and also use the phrase-level labeled
dataset for training. SST-2 is the binary version (positive,
negative) of this benchmark obtained by ignoring neutral
label and merging each polarity, and the resulting split is
6920/872/1821. Development data is used for hyper-parameter
tuning, and also used in early stopping for preventing from
over-fitting.

We also test our model on TREC question classification
dataset (TREC)2, which has a question set belonging to six
major categories (abbreviation, entity, description, human, lo-
cation, numeric). TREC consists of 5452/500 dataset for train-
ing/testing. To generate development dataset, we randomly
sampled 452 from the training set.

For all datasets, we use lower-cased words with splitting by
space and use accuracy as the metric.

B. Implementation Details

1) Overall architecture: {E,Wc
1:L,b

c
1:L,W

h,bh} are the
weight parameters that can be trained, where E ∈ RV×d is
lookup table for word vector representation with vocabulary
size V and embedding dimension d, and Wc

1:L indicates all
weights for L convolutional layers. For word representation,
we use the publicly available 300-dimensional GloVe trained
on the Common Crawl with 42B tokens [5], hence our embed-
ding dimension d = 300. Word embedding is normalized to
unit norm and is fixed in the experiments without fine-tuning.
For sentence matrix, s0 is chosen as maximum length of the
sentence in each dataset.

To verify the ability of proposed model, we limit the search
on hyper-parameter space as the iteration number T ∈ {1, 2}
and the number of the layers L ∈ {1, 2, 3}. Also, the same
iteration is given to each layers, and every layer having the
same k filters. For fair comparison, we set all our implemen-
tations having same number of weight parameters. With the
condition d = k and T = 1, R-CNN is identical to CNN,
hence we set the number of feature maps k = 300. The rest
hyper-parameters of model are set as m = 3, s = 3, K = 1,
α = 0.001, β = 0.75, and N = 41.

2) Training the model: In our implementation, the models
are trained using Adam [9] updates rule in combination with
the BPTT algorithm with gradient clipping over shuffled
mini-batch for minimizing the cross-entropy loss. The initial

1http://nlp.stanford.edu/sentiment/
2http://cogcomp.cs.illinois.edu/Data/QA/QC



TABLE I
COMPARISON BETWEEN C-CNN AND OUR BASELINES ON SST. ‘ITER’

INDICATES THE ITERATION STEPS AND R-CNN-ITER1 REPRESENTS OUR
IMPLEMENTATION OF CNN.

Model SST-5 SST-2
R-CNN-iter1 layer1/2/3 47.8 50.9 50.6 86.9 87.9 88.2
R-CNN-iter2 layer1/2/3 49.7 51.0 51.1 88.5 88.6 88.0
C-CNN-iter1 layer1/2/3 48.2 51.5 52.3 87.1 88.2 89.2
C-CNN-iter2 layer1/2/3 49.9 52.1 52.1 88.4 88.9 88.8

learning rate is set to 0.001 with the decay factor of 0.1 which
will be applied every 5 epochs. We use Xavier initializer [10]
for model initialization. During training, dropout is used after
each convolutional layer with probability 0.25. We also use l2
regularization with weight 1e− 5 for all datasets.

C. Results

1) Comparison with Baseline Models: We analyze the
proposed models by comparing C-CNN with our baselines
R-CNN and CNN on SST benchmark. For fair comparison,
we set our implementations to have the same number of
weight parameters. Varying the iteration steps and the number
of layers, the test accuracies of each implementation of the
models are shown in Tab. I. R-CNN with 1 iteration is identical
to CNN in our setting, and we do not report the results for
T ≥ 3 because there is no advantage in accuracy.

When comparing line 1 with line 2 in Tab. I, we can verify
the advantage of the recurrent connection in the convolutional
layer as most results of R-CNN are better than those of
CNN. Mostly, C-CNN is better than R-CNN ({line 3 and
4} vs line 2 in Tab. I), demonstrating that the combination
of the static input and the dynamic output helps the model
overcome the over-fitting problem. Line 2 and 4 show that
sentence-level understanding may be hampered by stacking
more than 2 layers at 2 iteration steps, and possible solution
is to use different iteration in each C-CL. These results support
that C-CNN has a better architecture over CNN for sentence
classification.

2) Comparison with State-of-the-art Models: We compare
our C-CNN with other models on sentence-level text classifi-
cation tasks. Each block shows non-CNN models, CNN-based
models, and our models from top to bottom, respectively.

Our C-CNN achieves better performances than state-of-
the-art models on SST-5 and TREC, and shows competitive
accuracy on SST-2. Tab. II shows that C-CNN outperforms
all other CNN based models except for MVCNN on SST-2,
which is slightly better than ours. MVCNN utilize extensive
sources such as four different-sized filters, five pretrained word
embeddings as well as pretraining the network to get the
highest score.

To our knowledge, there have been limited trials on clas-
sifying TREC dataset with neural networks. This is due to
the small size of the dataset, and it makes us hard to escape
over-fitting problem. C-CNN shows slightly better result than
the state-of-the-art method SVM [11], and significantly out-
performs other CNN based models.

TABLE II
COMPARISON BETWEEN C-CNN WITH THE STATE-OF-THE-ART MODELS.
THE FIRST BLOCK LISTS NON-CNN MODELS, AND THE SECOND BLOCK IS

FOR CNN-BASED MODELS. THE LAST BLOCK IS OUR MODEL.

Model SST-5 SST-2 TREC
SVM [11] - - 95.0
PVec [12] 48.7 87.8 -

RNTN [13] 45.7 85.4 -
T-LSTM [14] 51.0 88.0 -

DMN [15] 52.1 88.6 -
CNN [2] 48.0 87.2 93.6

DCNN [3] 48.5 86.8 93.0
MVCNN [4] 49.6 89.4 -
T-CNN [6] 51.2 88.6 -

C-CNN-iter1 layer1 48.2 87.1 90.8
C-CNN-iter1 layer2 51.5 88.2 94.4
C-CNN-iter1 layer3 52.3 89.2 95.2

V. CONCLUSION

We proposed a novel CNN architecture for sentence classifi-
cation. By combining recurrent connections with convolutional
layer, our network effectively integrated feature extraction and
context modulation within the same layer. Experimental results
demonstrated that the proposed model has an better CNN
architecture for NLP tasks.

REFERENCES

[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[2] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[3] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neu-
ral network for modelling sentences,” arXiv preprint arXiv:1404.2188,
2014.

[4] W. Yin and H. Schütze, “Multichannel variable-size convolution for
sentence classification,” arXiv preprint arXiv:1603.04513, 2016.

[5] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.”

[6] T. Lei, R. Barzilay, and T. Jaakkola, “Molding cnns for text: non-linear,
non-consecutive convolutions,” arXiv preprint arXiv:1508.04112, 2015.

[7] M. Liang and X. Hu, “Recurrent convolutional neural network for object
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3367–3375.

[8] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” in AAAI, 2015, pp. 2267–2273.

[9] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[10] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.” in Aistats, vol. 9, 2010, pp. 249–256.

[11] J. Silva, L. Coheur, A. C. Mendes, and A. Wichert, “From symbolic
to sub-symbolic information in question classification,” Artificial Intel-
ligence Review, vol. 35, no. 2, pp. 137–154, 2011.

[12] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference on
Machine Learning (ICML-14), 2014, pp. 1188–1196.

[13] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality over
a sentiment treebank,” in Proceedings of the conference on empirical
methods in natural language processing (EMNLP), vol. 1631. Citeseer,
2013, p. 1642.

[14] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[15] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in International
Conference on Machine Learning, 2016, pp. 1378–1387.


