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Abstract

Fully Attentional Networks (FAN) like Transformer
(Vaswani et al. 2017) has shown superior results in Neu-
ral Machine Translation (NMT) tasks and has become a
solid baseline for translation tasks. More recent studies
also have reported experimental results that additional
contextual sentences improve translation qualities of
NMT models (Voita et al. 2018; Müller et al. 2018;
Zhang et al. 2018). However, those studies have exploited
multiple context sentences as a single long concatenated
sentence, that may cause the models to suffer from inefficient
computational complexities and long-range dependencies. In
this paper, we propose Hierarchical Context Encoder (HCE)
that is able to exploit multiple context sentences separately
using the hierarchical FAN structure. Our proposed encoder
first abstracts sentence-level information from preceding
sentences in a self-attentive way, and then hierarchically
encodes context-level information. Through extensive
experiments, we observe that our HCE records the best
performance measured in BLEU score on English-German,
English-Turkish, and English-Korean corpus. In addition,
we observe that our HCE records the best performance in
a crowd-sourced test set which is designed to evaluate how
well an encoder can exploit contextual information. Finally,
evaluation on English-Korean pronoun resolution test suite
also shows that our HCE can properly exploit contextual
information.

1 Introduction
Recently, interests on context-awareness in Neural Machine
Translation (NMT) tasks have been increasing since addi-
tional contextual information is often crucial to produce
adequate translations. For example, especially in spoken
languages, duplicated information tends to be omitted fre-
quently if the same information is mentioned in the pre-
ceding sentences. That omitted information often cause in-
accurate, incomplete or ambiguous translations of spoken
languages such as movie subtitles. However, current trans-
lation models including Fully Attentional Networks (FAN)
(Vaswani et al. 2017) operate on a single sentence level do
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not take account of contextual sentences, hence they record
lower performances in spoken languages compared to those
in written and formal language documents.

A few studies have addressed this issue by introduc-
ing a secondary context encoder to represent contextual
sentences then combining them with the source sentence
prior to passing them onto the decoder (Voita et al. 2018;
Zhang et al. 2018; Miculicich et al. 2018). They proposed
context encoders that encode contextual information in the
sentence level vectors and use that information in translating
input words. These context encoders handle multiple sen-
tences as long word vectors by concatenating them and do
not involve the contextual level information.

Such approaches cause critical drawbacks in handling a
larger span of contextual sentences. First, the computational
complexity of context encoder scales quadratically both with
the number of tokens in each contextual sentence and the
number of contextual sentences. Second, (Tang et al. 2018;
Tran, Bisazza, and Monz 2018) have empirically shown
that FAN is limited at capturing long-range dependencies in
translation tasks. Hence, concatenating multiple contextual
sentences as a long single sentence is not only computation-
ally expensive, but it also weakens the context-awareness of
the model for large contexts.

In this work, we propose a Hierarchical Context Encoder
(HCE) to resolve this issue by hierarchically encoding mul-
tiple sentences into a contextual level tensor. HCE first en-
codes each sentence to a tensor with the FAN encoder, then
it converts the encoded tensors into a sentence embedding
vector by the attentive weighted summation. Since each sen-
tence embedding vector contains the contextual information
of each contextual sentence, we are able to build a context-
level tensor by listing all the sentence embedding vectors.
Then the context-level tensor is fed into another FAN en-
coder in order to get a tensor with correlative information
between contextual sentences, and the obtained tensor is fi-
nally combined with the source encoder to form the final
encoder output. Our HCE processes each context sentence
separately instead of a long concatenated sentence, hence it
shows efficiency in computational complexity. The compu-
tational complexity of HCE increases linearly as the num-
ber of context sentences increase and HCE shows the fastest



running time among standard baseline models in our exper-
iments.

We conduct a series of extensive experiments on NMT
with various language pairs to empirically show that our
HCE properly yields better translation with multiple con-
text sentences. Our experiments include public OpenSub-
titles corpus in English-German, English-Turkish and our
web-crawled movie subtitles corpus in English-Korean. On
all language pairs, we observed that the translation qualities
of our model outperform all the other models measured in
BLEU score.

Furthermore, we have constructed an English→Korean
evaluation set by crowd-sourcing in order to analyze how
well our HCE exploits contextual information. Our evalu-
ation set consists of two parts, a part where contextual in-
formation is helpful for translation and another part where
contextual information is unhelpful. We measure translation
performances in each part and analyze the effects of contex-
tual encoders including HCE by evaluating the performance
gap of the two parts. The results from this evaluation set
also show that our HCE performs the best among the base-
line models. Lastly we create a test suite for pronoun res-
olution on English→Korean similar to (Voita et al. 2018;
Müller et al. 2018). Evaluation results on the pronoun reso-
lution test suite also reveal the effectiveness of our proposed
model. We plan to release both the crowd-sourced evaluation
set and the pronoun resolution test suite.

In summary, our contributions are as follows; 1) we pro-
pose a novel architecture for embedding multiple sentences
into a tensor in order to exploit contextual information in
machine translation tasks; 2) we empirically show the ef-
fectiveness our model by BLEU score, crowd-sourced help-
ful/unhelpful evaluation set and a pronoun resolution test
suite; and 3) we publicly open our crowd-sourced evaluation
set and the pronoun resolution test suite.

2 Related works
Context-aware machine translation models need to focus
on additional contexts. In Statistical Machine Translation
(SMT), context-awareness is modeled explicitly which is
designed for the specific discourse phenomena (Sim Smith
2017). For example, anaphora resolution in translation typi-
cally involves identifying previously stated nouns, numbers,
and genders in source documents and manipulating restora-
tion in target sentences accordingly.

In NMT, either context of the source or the target lan-
guage can be considered. Exploiting source-side of contexts
requires an encoder to represent the multiple context sen-
tence efficiently (Miculicich et al. 2018; Voita et al. 2018).
On the other hand, the use of target-side contexts often in-
volves multi-pass decoding which translates a part of docu-
ments or discourses in the sentence level at first, then refines
translations using the previous translations as target contexts
(Xiong et al. 2019; Voita, Sennrich, and Titov 2019). Our
proposed model targets to exploit the source side of context-
awareness in this paper.

The simplest approach to incorporate contexts in the
source documents is concatenating all context sentences and
passing them into a sentence-level model (Tiedemann and

Scherrer 2017). In addition, having an extra encoder for con-
texts is then introduced recently. An extra encoder mod-
ule for context sentences is a natural extension since the
source and context sentences do not have the same signif-
icance in translation. In those studies, the context sentences
are separately encoded then integrated into the source sen-
tence representations using context-source attention and/or
gating network on encoder (Voita et al. 2018), decoder (Jean
et al. 2017) or both (Zhang et al. 2018).

Furthermore, structured modeling of context sentences is
also suggested to capture complex dependencies between a
source sentence and context sentences. For example, (Wang
et al. 2017) uses Recurrent Neural Networks (RNN) en-
coders operating both on sentence and document level. (Mi-
culicich et al. 2018) introduces a hierarchical attention net-
work that encodes context sentences first then summarizes
those contexts using a hierarchical structure. (Maruf and
Haffari 2018) introduces a memory network augmented
model that summarizes and stores context sentences. Our
method is closely related to those approaches, as our pro-
posed encoder also incorporates a hierarchically structured
abstraction of encoded context sentences. (Maruf, Martins,
and Haffari 2019) suggests a context attention module which
attends to contexts in both word and sentence level. It uses
an averaged word embedding as a sentence-level representa-
tion, whereas ours generate sentence-level tensor with FAN
encoders resulting in richer sentence representation.

On the other hand, how the quality of translation can be
benefited with contextual information is a viable research
question (Jean et al. 2017; Bawden et al. 2018). Those re-
searches mainly focus on the design of evaluation tasks that
assess the performance of the translation model on handling
discourse phenomena problems such as pronoun resolution
(Voita et al. 2018; Müller et al. 2018). (Voita, Sennrich, and
Titov 2019) also suggests that a carefully designed test suite
to evaluate context-aware translation models is crucial since
the standard metrics such as BLEU are insensitive on mea-
suring consistency in translation with contexts.

3 Model description
In this section, we briefly review common parts of encoders
in the context-aware NMT framework. We also review struc-
tures of the context-aware encoders which are our baseline
models. Then we introduce a detailed structure of our Hier-
archical Context Encoder (HCE). In addition, we analyze
computational complexities in our proposed encoder and
other baseline models.

3.1 Context-aware NMT encoders
NMT models without contexts take an input sentence x in a
source language and return an output sentence y′ in a target
language. We denote a target sentence as y which is used as
a golden truth sentence in supervised learning. Each of x,
y, and y′ is a tensor that is composed of word vectors, also
learnable weights during training.

We especially focus on Fully Attentional Networks(FAN)
based models like Transformer (Vaswani et al. 2017) which
has recently been widely used in NMT because of its per-
formance and efficiency. Transformer consists of an encoder



module and a decoder module, an encoder extract features
in x using self-attention and a decoder generate an output
y′ from the extracted features using both self-attention with
itself and attention with the encoder.

Through a single layer in Transformer encoder, an in-
put tensor passes a self-attention layer using multi-head dot
product attention and a position-wise feed-forward layer
(Vaswani et al. 2017):

TransformerEncoder(x) = FFN(MultiHead(x, x)).
(1)

The position-wise feed forward layer, denoted as FFN(x),
is composed double linear transformation layer with a ReLU
activation in between. The multi-head dot product attention
MultiHead and the dot product attention DotProduct are
given as follows;

MultiHead(q, v) =

[DotProduct(q, v)1, ..., DotProduct(q, v)H ]W,
(2)

DotProduct(q, v) = softmax(
qW qW kvT√

D
)vW v, (3)

where all W denote learnable weights, D is a dimension of
hidden space, and H is a number of heads. Both the self-
attention layer and position-wise feed-forward layer are fol-
lowed by skip connection and layer normalization. In addi-
tion, a stack with multiple TransformerEncoder is gener-
ally used in order to capture more abundant representations.

With N many additional context sentences [c0, ..., cN−1]
are given, an encoder has to capture contextual information
among them then combine the contextual information with
source sentence representations. We list four previously sug-
gested models as follows, which are also our baseline mod-
els in our experiments;

• Transformer without contexts (TwoC): As a baseline,
we have experimented with Transformer without contexts
(TwoC) model which has the same structure as (Vaswani
et al. 2017). TwoC completely ignores given additional
context sentences and only incorporates with the input
x and the target y. The computational complexity is
O((Ls)

2), where Ls is a length of input x.
• Transformer with contexts (TwC): The simplest ap-

proach is concatenating all context sentences and an in-
put sentence and consider the concatenated sentence as a
single input sentence;

x′ = Concat([x, c0, ..., cN−1]). (4)

Then, the output of TwoC encoder is the output of a
stacked transformer encoder with x′. The computational
complexity isO((Ls+NLc)

2), whereLc is a fixed length
of context sentences. The complexity becomes quadrati-
cally expensive as N grows.

• Discourse Aware Transformer (DAT) (Voita et al.
2018): DAT handles context sentences with an extra con-
text encoder which is also a stacked transformer encoder.
We slightly modified DAT to make it available at handling
multiple context sentences since (Voita et al. 2018) is orig-
inally designed for handling a single context sentence.

The context encoder has the same structure and even
shares its weights with the source encoder through
NLayer − 1 layers. In the last layer, the context encoder
has another transformer encoder module without sharing
its weights. The last layer of the source encoder takes
an intermediate output tensor h′ which is resulted from
NLayer − 1 stacked transformer encoder, processes both
self-attention and context-source attention with t using
MultiHead;

t =Concat([StackedTransformerEncoder(c0), ...,

StackedTransformerEncoder(cN )]),
(5)

hcontext =MultiHead(h′, t), (6)
and

hsource =MultiHead(h′, h′). (7)
the final output tensor of encoder h is given with the gated
sum as follows;

h = σ(Wh[hsource, hcontext] + bh), (8)

whereWh is a learnable weights and bh is a learnable bias
term.
The computational complexity of DAT is O(L2

s +NL2
c),

which is comparable to our model. However, in order
to process context-source attention with multiple context
sentences, it concatenates all tensors from each context
encoders to a long tensor where long-range dependencies
of FAN may be limited.

• Document-level Context Transformer (DCT) (Zhang
et al. 2018): The encoder of DCT is similar to the
DAT, except for the integration of the context and source
encoder. Instead of context-source attention and gated
sum at the output of both encoders, each layer of the
source encoder takes encoded contextual information t
and compute context-source attention followed by point-
wise feed-forward layer;

hcontext =MultiHead(h′, t), (9)

and
h = FFN(hcontext). (10)

Since the extensive use of the context-source attention
in the encoder, the computational complexity of DCT is
O(NLcLs+L

2
s+NL

2
c). This can grow prohibitively, es-

pecially on handling long context sentences or when the
number of context sentences is large.

• Hierarchical Attention Networks (HAN) (Miculicich
et al. 2018): HAN has a hierarchical structure with two
stage at every HAN layer. At the first level of the hierar-
chy, a single HAN layer encodes each context sentence
ci to an intermediate tensor ei ∈ RLc×D with context-
source attention;

ei =MultiHead(h′, ci), (11)

where h′ denotes an output from a previous layer or an
input x. Each ei is a tensor with a length of Lc and let eji
be the j-th vector of ei.



At the second level of hierarchy, eji in all context sen-
tences are concatenated through i dimension, resulting
tensors sj ∈ RN×D;

sj = Concat([ej0, ..., e
j
N ]), (12)

whereN is a number of context sentences. Then, an inter-
mediate output tensor t which contains contextual infor-
mation queried by each word from the input sentence can
be given as follows;

t =MultiHead(h′, sj). (13)

All MultiHead layers are followed by position-wise
feed forward layers and normalization layers. Finally, the
output tensor h of HAN encoder is computed with a
gated-sum module introduced by (Tu et al. 2017). The
aforementioned structure of a single layer in HAN is
stacked NLayer times.
The computational complexity of HAN encoder is
O(NLcLs + L2

s + NL2
c) which is also comparable to

our proposed model. Nonetheless, HAN encoder requires
context-source attention two times at every layers. Also,
since the second context-source attention is performed on
si = Concat([ej0, ..., e

j
N ]), HAN does not take account of

internal correlations among [e0i , ..., e
Lc
i ].

3.2 Hierarchical context encoder

Figure 1: The structure of our proposed Hierarchical Con-
text Encoder. Each context sentences ci is encoded through
transformer encoders to the tensor ei and the attentive
weighted sum module vectorizes each ei to the vector si.
Upper transformer encoder encodes the input tensor s com-
posed by concatenation s = [s0, ..., sN ] and outputs our fi-
nal context representation tensor t. Then the context repre-
sentation is combined to the source encoder by gated sum.

We propose a novel context encoder that hierarchically
encodes multiple sentences into a tensor. Our proposed en-
coder, Hierarchical Context Encoder (HCE), is designed to

capture correlations between sentences in contexts as well
as correlations between words in each sentence.

Each context sentence ci after word embedding layer is
given as a tensor of order 2; ci ∈ RLc×D′

where Lc is a
maximum length of each context sentence and D′ is a di-
mension of word embeddeding vectors. In the lower part of
hierarchy, HCE encodes each of ci to sentence-level tensor
ei using the stacked transformer encoder as (Vaswani et al.
2017);

ei = StackedTransformerEncoder(ci). (14)

Each encoded sentence-level tensor ei is also a tensor of or-
der 2, ei ∈ RLc×D where D is a hidden dimension.

We then compress each encoded sentence-level tensor
into a sentence-level vector by a self-attentive weighted sum
module which is similar to that of (Lin et al. 2017). Our self-
attentive weighted sum module takes ei as an input tensor
and computes a vector si as follows;

si =
∑
j

αjeij , (15)

α = FFN(MultiHead(ei, ei)). (16)
The output of the attentive weighted sum module si is a

vector representing the information of each i-th context sen-
tence. Then we concatenate [s0, ..., sN ] to a context embed-
ding tensor s. The context embedding tensor s ∈ RN×D is
fed into another FAN encoder layer which is the upper part
of the hierarchy to encode the whole contextual information
into a single tensor t;

t = TransformerEncoder(s). (17)

Finally, the contextual information tensor t is combined to
source encoder by gated sum as Equation 6, 7, and 8, which
is the same process introduced by (Voita et al. 2018). Full
structure of HCE is depicted in Figure 1.

The main difference between HCE and other baseline
models especially HAN is that HCE encodes each con-
text sentence as the way of sentence embedding with self-
attention independent to the source word, while HAN uses
context-source attention. To explain more in detail, two main
differences between the hierarchical FAN structures of HAN
and HCE are as follows: 1) at the bottom part of the hierar-
chy, HCE encodes each context sentence to a tensor with
self-attention while HAN encodes each context sentence
with context-source attention using query words from input
sentences; and 2) at the upper part of the hierarchy, HCE
first uses the self-attentive weighted sum to encode a ten-
sor into a vector which contains the whole information from
each context sentence, then encodes the whole contexts with
self-attention again. On the other hand, HAN uses context-
source attention again. To summarize, HCE only models the
context-source relations at the upper part of the hierarchy
resulting in a simpler and clearer model structure.

The computational complexity of HCE is O(L2
s +NL2

c).
HCE extracts more compact context-level representation
from each sentence-level representation by self-attentive
weighted sum over each ei, hence it complements DAT
(Voita et al. 2018) and DCT (Zhang et al. 2018) whereas they



take the whole contexts as a single sentence by concatena-
tion. Besides, the encoding procedure of context sentences
is not dependent on the input sentence x unlike HAN. This
allows HCE to cache context-level representations t of fre-
quently appeared context sentences, which is important in
implementing a real-time application.

4 Data
We experimented with our model and baseline models on
English-German TED corpus, English-German OpenSubti-
tles corpus, English-Turkish OpenSubtitles corpus, and our
web-crawled English-Korean subtitle corpus.

4.1 English-German IWSLT 2017 corpus
We use the English-German corpus from the IWSLT 2017
evaluation campaign (Cettolo et al. 2017), which is pub-
licly available on WIT3 website1. The corpus consist of tran-
scriptions and their translations of TED talks. We combine
dev2010 and tst2010 into a development(dev) set and
tst2015 as a test set. We extract context-aware dataset
where each set consists of a source, a target sentence and
multiple context sentences. Since the corpus is aligned as
sentence level, we assume that every 2 preceding sentences
are context sentences. We also include context sentences
only within the same talk of the source sentence, as the
data is separated as talks. The resulting dataset consists of
211k, 2.4k, 1.1k examples of train, dev, test sets respec-
tively. Also, we put a special beginning of context token at
the beginning of each context sentences to differentiate from
source sentences. Finally, we have used a byte-pair encoded
vocabulary with about 16,000 tokens.

4.2 OpenSubtitles corpus
We also choose the OpenSubtitles corpus for English-
German and English-Turkish tasks. We use the 2018 version
(Lison, Tiedemann, and Kouylekov 2018) of the data, each
consist of 24.4M , 47.4M parallel sentences respectively.
Following the approach in (Voita, Sennrich, and Titov 2019),
we first cleaned the data by picking only pairs with a time
overlap of subtitle frames at least 0.9. After cleaning, we
take 7.5M and 20.2M sentences for English-German and
English-Turkish corpus.

We then take the context sentences by using the times-
tamp of each subtitle. The timestamps contain start time and
end time in ms for each subtitle. We focus on the start times
to compile a set of data including a source sentence and pre-
ceding contextual sentences. We assume that if the start time
of a preceding sentence is within 3000 ms from the start
time of a sentence then that preceding sentence contains the
contextual information. We set the maximum number of pre-
ceding contextual sentences up to 2.

4.3 English-Korean subtitle corpus
Finally, for English-Korean experiments, we construct a
web-crawled subtitle corpus with 5,917 files. These files are
English-Korean bilingual subtitle files of movies, TV series,

1https://wit3.fbk.eu/mt.php?release=2017-01-trnted

and documentary films from various online sources. We set
randomly selected 5.3k files for train, 500 files for dev, and
50 files for test set. The train set includes 3.0M sentences,
the dev set includes 28.8k sentences, and the test set includes
31.1k sentences. Our web-crawled English-Korean bilingual
subtitle files include time stamps for each subtitles. Thus we
pre-process those files as similar as processing in Section
4.2. The resulting data have 1.6M sets of serial sentences in
train set, 155.6k sets in dev set, and 18.1k sets in test set. We
also have used a byte-pair encoded vocabulary with about
16,500 tokens for English-Korean experiments. We display
some raw samples from our test files in Table 1.

5 Experiments
We evaluate our HCE by BLEU score, model complexity,
BLEU on helpful/unhelpful set, and accuracy on the pro-
noun resolution set. All experimental results show the effec-
tiveness of HCE compared to baseline models.

5.1 Hyperparameters and Training details
Through our experiments, we use 512 hidden dimensions
for all layers including words embedding layers, FAN lay-
ers, and the encoded context layer. We set NLayer = 6 for
all models and share the weights of the source encoder to
context encoder for the DAT, HAN, and HCE models. For
all attention mechanisms, we set the number of heads as 8.
The dropout rate of each FAN layers is set to 0.1.

For each language pair, we tokenize each text by the
wordpiece model (Schuster and Nakajima 2012; Wu et al.
2016) with a vocabulary of about 16,000 tokens. Also, we
put a special beginning of context token <BOS> at the begin-
ning of each context sentences to differentiate from source
sentences.

We implement all the evaluated models using the
tensor2tensor framework (Vaswani et al. 2018). We
train all models with ADAM (Kingma and Ba 2014) opti-
mizer with learning rate 1e-3 and adopt early stopping with
dev loss. Unlike (Miculicich et al. 2018; Zhang et al. 2018;
Maruf, Martins, and Haffari 2019), we do not use the itera-
tive training which trains the model on a sentence-level task
first, then fine-tunes the model with contextual information.
All the models we have evaluated are trained from scratch
with random initialization.

For scoring BLEU, we use the t2t-bleu script2 which
outputs the identical results as Moses script (Koehn et al.
2007).

5.2 Overall BLEU evaluation
We measure performances of HCE and other five baseline
models in English-German (IWSLT’17 and OpenSubtitles),
English-Turkish (OpenSubtitles), and English-Korean(our
Web-crawled corpus). Overall BLEU scores on all eight
datasets are displayed in Table 2. Our model yields the best
performances on all eight datasets. Especially on our Web-
crawled English-Korean, HCE shows superior performance
compared to other models. These results indicate that our

2https://github.com/tensorflow/tensor2tensor



Start Time End Time English Korean
···

337733 339967 Daniel likes hanging out with his cousins. 다니엘은 사촌들과 노는걸 좋아했거든요

340035 341168 He's been going back and forth until Leith and I 양육권을 제대로 가질 수 있을때까지

341236 342303 can settle custody. 왔다 갔다 했어요

344373 345940 Listen, don't worry. 너무 걱정 마세요

···

Table 1: Bilingual subtitle samples from our English-Korean test files

Corpus IWSLT’17 OpenSubtitles OpenSubtitles Web-crawled
Language pair En→De De→En En→De De→En En→Tr Tr→En En→Ko Ko→En

Transformer without contexts 28.25 32.18 27.95 33.93 24.89 36.27 8.58 23.67
Transformer with contexts 28.65 32.68 28.07 34.04 23.96 35.81 9.46 24.23
DCT (Zhang et al. 2018) 26.76 30.33 26.3 32.05 21.91 34.3 6.5 20.72
DAT (Voita et al. 2018) 28.82 32.59 28.09 33.99 24.30 35.23 8.56 23.91

HAN (Miculicich et al. 2018) 28.85 32.72 28.00 34.42 24.86 36.55 8.76 24.41
HCE (ours) 28.89 33.01 28.40 34.59 25.11 36.84 11.30 26.70

Table 2: BLEU score. Our proposed Hierarchical Context Encoder have shown the best results in all language pairs.

model exploits given contextual sentences effectively and
translate better than all five baseline models in English-
German, English-Turkish and English-Korean translation
tasks.

5.3 Model complexity analysis

Model training speed inference time # of Params
(steps/sec) (tokens/sec)

TwC 4.07 62.10 61.0M
DCT 2.42 45.32 98.7M
DAT 4.59 65.07 69.9M
HAN 4.47 64.05 66.2M
HCE 4.67 65.12 66.7M

Table 3: Training speed, inference time and number of pa-
rameters.

We also observe that our HCE is the most efficient in
training speed and inference time among our baselines. In
Table 3, HCE records the fastest training speed and infer-
ence time indicating that HCE has the most computationally
efficient structure. These results also show that the perfor-
mance gain of HCE is not only from the complexity of the
model but the structural strength because the number of pa-
rameters is comparable to others.

5.4 BLEU evaluation on helpful/unhelpful
context

In order to verify that our model actually uses the contex-
tual information to improve translation quality, we conduct
an additional experiment with a part of data where contex-
tual sentences are helpful for translating and the other part
of data where they are not. We randomly choose 10,000 sets
of serial sentences from our test set of En→Ko data and split

them up into two parts by crowd-sourcing with Amazon Me-
chanical Turk (Buhrmester, Kwang, and Gosling 2011). The
first part consists of 4,331 sets of which context sentences
are helpful for translating (e.g. context sentences include
critical information, exact referred object by pronouns, or
residual parts of an incomplete source sentence). The re-
maining part consists of 5,669 sets of which context sen-
tences are unrelated to translate the source sentences.

We examine BLEU scores of two parts separately to ob-
serve how well each model uses helpful contexts. The re-
sults are displayed in Table 4. We observe a large gap be-
tween BLEU score on helpful set and that on unhelpful set
with all four baseline models, showing that helpful set is
harder to translate because abstracting and exploiting con-
textual information is likely to be mandatory to translate
helpful set. On the other hand, HCE closes the gap between
BLEU scores on each set, indicating that HCE understands
the contextual information and is able to perform on helpful
set as well as on unhelpful set.

5.5 En→Ko pronoun resolution test suite
Finally, we evaluate the accuracy of all models that use con-
texts on our En→Ko pronoun resolution test suite. we cre-
ate a test suite for English→Korean pronoun resolution to
examine how well a model understands contextual informa-
tion. Our test suite is composed of 150 sets, each of which
includes 1) a source sentence with a pronoun, 2) preceding
contextual sentences with the exact word referred to by the
pronoun, 3) a target sentence with the corresponding pro-
noun, 4) a correct target sentence where the pronoun is re-
placed with the exact word, and 5) a wrong target sentence
where the pronoun is replaced with an unrelated word. We
follow a scoring method in (Müller et al. 2018) for evalua-
tion; if a model’s negative log-likelihood of correct sentence
is lower than that of wrong sentence, then we consider the



Model Total set helpful set unhelpful set BLEU gap
Transformer without contexts 7.46 6.69 8.04 +1.35

Transformer with contexts 8.29 7.45 8.92 +1.47
DAT (Voita et al. 2018) 8.22 7.48 8.77 +1.29

HAN (Miculicich et al. 2018) 8.34 7.44 9.01 +1.57
HCE (ours) 10.27 10.08 10.40 +0.32

Table 4: BLEU score evaluations with helpful contexts set and unhelpful contexts set from En→Ko test data. All four baseline
models have shown large gap between BLEU score on helpful contexts set and BLEU score on unhelpful contexts set. On the
other hand, Our proposed Hierarchical Context Encoder has almost closed the gap between BLEU scores on two sets.

Label English Korean
context 1 When did the tower collapse?
context 0 Oh, last winter.

source / target Brother Remigius says we haven't the funds to repair it. 레미져스 수사님 말론 그걸 고칠 돈이 없다는군.

correct 레미져스 수사님 말론 탑을 고칠 돈이 없다는군.

wrong 레미져스 수사님 말론 지붕을 고칠 돈이 없다는군.

Table 5: A sample set of English→Korean pronoun resolution test suite

Model accuracy
Transformer with contexts 0.25

DAT (Voita et al. 2018) 0.44
HAN (Miculicich et al. 2018) 0.47

HCE (ours) 0.48

Table 6: Accuracy on our En→Ko pronoun resolution test
suite.

model is able to detect wrong pronoun translation.
A sample from our test suite is displayed in Table 5, the

pronoun and corresponding words are emphasized in bold.
In the sample, the source sentence has a pronoun “it” refer-
ring the word “tower” in the context 1 sentence. The target
sentence also has the corresponding boldfaced pronoun in
Korean, “ (it)”. We replace the pronoun in target sen-
tence to the exact referring Korean word “ (tower)” in the
correct sentence, and we replace it to an unprecedented yet
similar Korean word, “ (roof)” in the wrong sentence.

The results are displayed in Table 6. While TwC scores
the lowest accuracy with 0.25, DAT and HAN record accu-
racy with 0.44 and 0.47 respectively. HCE records the high-
est accuracy of 0.48 in this test. These results support the
hypothesis that it is harder to capture contextual information
on a single long concatenated sentence than on structured
multiple context sentences. Also, the result that HCE and
HAN both perform better than DAT reveals the strength of
hierarchical structure for multiple contexts which is able to
capture the contextual information effectively.

5.6 Qualitative Analysis
Table 7 shows three examples how contextual encoders at-
tend and comprehend the context sentences while translat-
ing a particular pronoun. The words in brackets next to the
input sentences are the words in context sentences referred
by each boldfaced pronoun. The intensity of color (orange)

Model Input sentence & Visualization
I want to know what you told him that night. (My father)

DAT

HAN

HCE

Do you have any idea what his family has done? (Dan)

DAT

HAN

HCE

She can be the one to tell me or not tell me. (Lilly)

DAT

HAN

HCE

Table 7: Three visualization examples of attention weights
for given pronoun boldfaced words which are referring to the
words in brackets. We refer each of them as (a) the upper-
most example, (b) the middle example, and (c) the bottom
example.



is proportional to the attention weight for each word. Also,
the intensity of color (blue) is proportional to the attention
weight for each context sentence in HCE and HAN.

In general, the third-person pronouns in English are of-
ten translated into Korean pronouns that do not contain at-
tributes like gender, or phrases indicating the referenced per-
son or object. For example, the word “his” in the middle ex-
ample (b) has translated as “ (their)” which is a correct
Korean possessive pronoun for referring “Dan” in c1 sen-
tence. In the bottom example (c), the word “She” has trans-
lated as “ (oneself)” which can be used for both male and
female. Likewise, the word “him” in the uppermost example
(a) has translated as “ (father)” which is the exact re-
ferred word. Considering such phenomena, we regard that
correctly referencing the proper nouns is crucial in translat-
ing pronouns into Korean.

From this point of view, Table 7 explains the strength of
HCE in the En→Ko translation. As presented in Table 7,
we observed that HCE gives more attention to the context
sentences which contain the exact referred words. Hence,
the upper hierarchy of HCE pays its attention to the more
important sentence as we have intended. We also observed
that both our HCE and HAN tend to attend to nouns such
as names of people (e.g. Dan, Chuck) or names of specific
locations (e.g. the church, Paris). Nevertheless, HCE more
accurately attends to the exact referred words comparing to
HAN. In the first example, HCE gives large portion of its
attention to “My father” while HAN choose “business” as
the most important word. The second example also shows
the ability of HCE to exploit context information properly.
HCE understands that the word “Dan” is more important
than “Chuck”, while HAN gives most of its attention to the
word “Chuck” except for the <EOS> token. Although HCE
computes context representations independent of the input
query, these visualization examples show that HCE can cor-
rectly attend to the exact words referred by the pronouns.

6 Conclusion

In this work, we have introduced Hierarchical Context En-
coder (HCE) structure which is able to encode multiple
contextual sentences with hierarchical FAN structure. We
have shown that our model outperforms all baseline mod-
els in English-German, English-Turkish and English-Korean
translation tasks and also that our model is the most effi-
cient in computational complexity. We also have shown that
our model closes the gap of translation quality between the
sentences with helpful contexts and the sentences with unre-
lated contexts, indicating that our model is better at exploit-
ing the helpful contextual information for translating than
baseline models. Analysis on pronoun resolution test suite
support the effectiveness of our HCE.
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