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Finding influential users in a social network is essential for viral marketing and social media market-
ing. Influence maximization problem is defined as finding a node set S of given size K in a social network
to maximize their influence spread — the expected total number of activated nodes under a certain diffu-
sion process initiated from the set S. In this work, we propose a novel algorithm IRIE that integrates the
advantages of influence ranking (IR) and influence estimation (IE) methods for influence maximization
in both the independent cascade (IC) model [7, 8] and its extension IC-N [1] that incorporates negative
opinion propagations. Through extensive experiments, we demonstrate that IRIE matches the influence
coverage of other algorithms while scales much better than all other algorithms. Moreover IRIE is much
more robust and stable than other algorithms both in running time and memory usage for various density
of networks and cascade size. It runs up to two orders of magnitude faster than other state-of-the-art
algorithms such as PMIA [2] for large networks with tens of millions of nodes and edges, while using
only a fraction of memory.

In the IC model, each activated node has a single chance to activate each of its outgoing neighbor with
a probability assigned to the edge. The IC model can be identified with the Susceptible/Infective/Recovered
(SIR) model for the epidemic spreading [10]. Kempe et al. [7] showed that finding optimum solution
for the influence maximization under the IC model is NP-hard, and proposed a Greedy algorithm that
obtains (1− 1/e)-approximation for the problem. A number of follow-up works tackle the problem by
designing more efficient and scalable optimizations and heuristics [8, 9, 4, 3, 2, 4, 5, 11]. Among them
PMIA [2] has stood out as the most efficient heuristic so far.

In the greedy algorithm as well as in PMIA, each round a new seed with the largest marginal influence
spread is selected. To select this seed, the greedy algorithm uses Monte-Carlo simulations while PMIA
uses more efficient local tree based heuristics to estimate marginal influence spread of every possible
candidate. These are especially slow for the first round where the influence spread of every node needs
to be estimated. Instead of estimating influence spread for each node at each round, we devise a global
influence ranking method, Influence Rank(IR), derived from a belief propagation approach, which uses a
small number of iterations to generate a global influence ranking of the nodes and then select the highest
ranked node as the seed. However, the influence ranking is only good for selecting one seed. If we use
the ranking to directly select k top ranked nodes as k seeds, their influence spread may overlap with one
another and not result in the best overall influence spread. To overcome this shortcoming, we integrate
IR with a simple influence estimation (IE) method, such that after one seed is selected, we estimate
additional influence impact of this seed to each node in the network, which is much faster than estimating
marginal influence for many seed candidates, and then use the results to adjust next round computation
of influence ranking. When combining IR and IE together, we obtain our fast IRIE algorithm. Besides
being fast, IRIE has another important advantage, which is its memory efficiency. For example, PMIA
needs to store data structures related to the local influence region of every node, and thus incurs a high
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memory overhead. In contrast, IRIE mainly uses global iterative computations without storing extra data
structures, and thus the memory overhead is small.

Let σ(S) be the expected total number of activated nodes given a seed set S. When S = /0, our
algorithm computes estimate r(u) of influence σ({u}) of a node u by the following equation.

r(u) = 1+α ·

(
∑

v∈Nout(u)
Puv · r(v)

)
, (1)

where Nout is a set of our-neighbor of u, Puv is the probability that u activates its out-neighbor v, and
α ∈ (0,1] is a damping factor. We first prove that r(u) with α = 1 is very close to σ({u}) in any tree
graph, and show that r(u) is a good estimate of σ({u}) in any graph. After selecting some seed node,
we consider the influence from the selected seed node. Let APS(u) be the probability that a node u is
activated when the diffusion process begins from the seed set S. To estimate APS(u), we adopt a local
tree-based approximation to influence of each seed node [2]. Then, IRIE computes estimate r(u) of
marginal influence σ(S∪{u})−σ(S) of a node u by the following equation.

r(u) = (1−APS(u)) ·

(
1+α

(
∑

v∈Nout(u)
Puv · r(v)

))
. (2)

The factor (1−APS(u)) indicates the probability that a node u is not activated by the seed set S. Note
that (1) and (2) are exactly same when S = /0. We compute iterative computations of (2) up to t times and
obtain r(t)(u), which computes the estimate of marginal influence of u within distance t from u. Through
extensive experiments, we observe that t = 5 is good enough for most of the networks.

We conduct extensive experiments using synthetic networks as well as five real-world networks with
size ranging from 29K to 69M edges, and different IC model parameter settings. We compare IRIE with
other state-of-the-art algorithms including the optimized greedy algorithm, PMIA, simulated annealing
(SA) algorithm proposed in [5], and some baseline algorithms including the PageRank. Our results show
that (a) for influence spread, IRIE matches the greedy algorithm and PMIA while being significantly bet-
ter than SA and PageRank in a number of tests; and (b) for scalability, IRIE is some orders of magnitude
faster than the greedy algorithm and PMIA and is comparable or faster than SA; and (c) for stability IRIE
is much more stable and robust over structural properties of the network and the cascade size than PMIA
and the greedy algorithm.

Moreover, to show the wide applicability of our IRIE approach, we also adapt IRIE to the IC-N
model, which considers negative opinions emerging and propagating in networks [1]. Our simulation
results again show that IRIE has comparable influence coverage while scales much better than the MIA-
N heuristic proposed in [1].

Further details of our work including the details of algorithm description and experimental results
are presented in our technical report [6].
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