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How information, new ideas, and rumors diffuse through a social network has been a funda-
mental question for many decades in various disciplines including computer science, social science,
and economics [1, 5, 9, 14]. In recent decades, various models of information diffusion have been
studied. In particular, Kempe et al. [10] proposed the general threshold model, a unified general-
ization of many diffusion models on networks, which is based on utility maximization of individ-
uals in game theoretic consideration. In this model, each node v has its own threshold function
fv : {0, 1}dv → [0, 1] that depends only on the decisions of its neighbors, where dv is the degree
of v, and a threshold value θv ∈ [0, 1], which is drawn independently and randomly from a certain
probability distribution µ. Despite the importance of such study, analysis on the threshold model
has focused on special cases such as homogeneous thresholds [16], submodular influence [11], and
locally tree-like networks [15].

In this work, we consider the general threshold model with arbitrary threshold distribution on
an arbitrary network structure that may have many triangles and short cycles. First, we prove that,
for any linear threshold model (i.e., fv’s are linear functions) with arbitrary threshold distribution
when the initial adopters are chosen uniformly at random, only if (essentially) all nodes are of
degrees ω(log n), then the final cascade size is sharply concentrated around its mean with high
probability, where n is the total number of nodes. Furthermore, somewhat surprisingly we prove
that the expectation of the cascade size is asymptotically independent of the network structure
under the same condition.

More precisely, we consider that the network structure is given and that each individual becomes
an initial adopter independently with a given probability x ∈ [0, 1]. This process can be regarded as
diffusion process initiated by public marketing that affects each individual to be an initial adopter
independently with probability x. Let Z(= Zx) be the final cascade size if an initial adopter set
is given by the above process, and let F be the cumulative density function of µ. Let α0 = x, the
fraction of initial adopters, and let αt = F (αt−1) for t ∈ N. Let α∗ = limt→∞ αt. Then one can
easily check that α∗ = min{α|F (α) = α} ≤ 1. We prove that the final cascade size is very close to
α∗n with high probability and it is asymptotically independent of the network structure.

Theorem 1 Suppose that µ is continuous and F is not tangential to y = α at α∗. If dv = ω(log n)

for all v ∈ V and the weight of u’s influence on v is wuv = O
(

1
dv

)
for every uv ∈ E, then for any

ε > 0 and δ > 0,
Pr[|Z − α∗n| > nε] = o(n−δ).

The condition that y = F (α) is not tangential to the line of y = α at α∗ is a very mild
assumption and it only requires that there exists γ > 0 such that F (α∗ + ∆) < α∗ + ∆ for all
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∆ ∈ (0, γ]. Moreover, the condition that the edge weight of uv ∈ E is of O
(

1
dv

)
simply means that

there is no strong relationship by an edge uv that is dominated the others which have the same
end point v. Note that α∗ can be computed in O(1) and it is independent of the network structure,
and only dependent on the threshold distribution µ and x. In general α∗ is discontinuous at some
values of x, and Theorem 1 enables us to compute those values of x for which the cascade size α∗

becomes suddenly large. Hence, we can compute such tipping points by Theorem 1. In the proof of
Theorem 1, we prove that for any t ∈ N, there exists εt (depending on ε) such that any node v with
its threshold value θv ≤ αt − εt adopts information with high probability after t iterations, while
any node v with θv > αt + εt does not adopt information with high probability after t iterations.

We then extend our results to arbitrary general threshold models with any initial adopter set and
provide upper and lower bounds of the cascade size under certain mild conditions. We generalize so
that each individual v becomes an initial adopter independently with probability xv. Furthermore,
we provide an efficient algorithm under the general threshold model that estimates the final cascade
on any network structure with any given set of initial adopters. Our algorithm can be employed as
a subroutine for numerous algorithms for the influence maximization problem [4,10]. The influence
maximization problem is to find one of the most influential sets of initial adopters of a specific size
that maximizes the final cascade size. Our work also can be applied to measuring the resilience and
the vulnerability of network structure in the presence of cascading failures or attacks [2, 8]. This
problem is closely related to financial crises, electrical blackouts of power stations, and the failure
of Internet routers.

We conducted experiments with our algorithm for estimating the cascade size on real-world
social networks including Epinions networks and political blogs, and synthetic networks including
small-world networks and scale-free networks to validate our results on networks having nodes
with small degrees. We verified at each iteration of the diffusion process that threshold values of
individuals who are influenced at that time are actually concentrated around the mean, as suggested
in Theorem 1. We also confirm by experiments that the final cascade size is actually concentrated
around the value computed by our proposed algorithm, and that a tipping point appears at the
values of x computed by Thorem 1 even when the degrees of each individual are not so large (around
20 on average).

We now describe the diffusion process of the general threshold model in more details. In this
model, each individual v has its own threshold function fv : {0, 1}dv → [0, 1] that depends only on
the decisions of its neighbors, where dv is the number of neighbors of v, and on a threshold value
θv ∈ [0, 1], which is drawn independently and randomly from a certain probability distribution µ.
Given a set of initial adopters A at time t = 0, the diffusion process proceeds in discrete timesteps:
in each iteration t, all nodes that were adopted in iteration (t − 1) remain adopted, and each
individual v decides to adopt the information if the fv value becomes at least θv. The process runs
until no additional activation is possible. This model assumes that to adopt the information, an
individual needs to have a large enough proportion of its neighbors who have adopted the same
information. This consideration is rational when adoption requires some cost, or when the benefits
of adoption increase as more people make the adoption.

One of the most widely studied threshold models is the linear threshold model, in which the
threshold functions fv are linear [7, 12, 13]. For example, a local interaction game with selfish
agents can be viewed as an example of the linear threshold model [3, 6]. In this game, each
agent can choose between two choices, obtaining a payoff when her neighbors make the same
decision. Another important class of diffusion model is the independent cascade model (essentially
the SIR model). In this model, every time a node u becomes infected, every uninfected neighbor
v of u has a single chance of becoming infected, with probability puv. This can be regarded
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as a special case of the general threshold model that has the threshold functions fv(Nv(t)) =
xv + (1 − xv)(1 −

∏
u:uv∈E(1 − puvZu(t))) where xv is the probability that v becomes an initial

adopter and Zu(t) = 1 if u has adopted the information at iteration t and Zu(t) = 0 otherwise.
The novelty of our analysis lies in its broad applicability to a general class of threshold models

and network topologies. Our results are naturally applicable to broader settings, including non-
submodular influence conditions for any network with node degrees that are (essentially) ω(log n).
As a future work, we plan to work on generalization of our results into more general network setups,
for example when the states of nodes do not need to be monotone over time. It would be also our
future direction to extend down our results to milder conditions than the current requirement of
ω(log n) degrees.
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