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How political opinion, product adoption, rumors, and trends diffuse through social
networks has been a fundamental question for many decades in a wide variety of research
disciplines. The spread of opinion on networks can be thought of as a state dynamics,
where each node decides its state based on interactions with its neighbors. In many such
settings, the dynamics of the states of nodes are described by some Markov process on a
graph G = (V,E) with a finite state space S. I.e., the state of a node v at each time step t
is determined solely by the states of v and its neighbors at a time period {t− j, · · · , t− 1}
for some nonnegative integer j. Examples of such Markov processes include information
diffusion models [7], the voter model [15], the pricing model [6], the naming game [14],
and the gossip algorithm [4], some of which we will present in more detail later.

To predict the behavior of opinion spreading under the Markov process, mean-field
(MF) approximation with ordinary differential equations (ODEs) has been widely used [2,
3, 5, 11]. Such an approach describes the state change rule as a system of ODEs that
reflect the inherent Markovian state dynamics. In essence, the actual state ratio dynamics
converges to the solution of the ODEs as the number of nodes goes to infinity. However,
the analyses of its convergence are known only for symmetric network structures such as
complete or bipartite graphs [8]. In our work, we propose a generalized MF method that
relaxes the condition on strong symmetry, and prove the convergence to the ODE solution
on any slightly dense graphs.

More precisely, consider a network structure G = (V,E) with n = |V | nodes so that
each node has degree ω(log n) (hence, slightly dense). Initially each node determines its
state at time 0 randomly according to the state ratios (si)i∈S in an i.i.d. manner. Then
we prove that the solution of the actual state dynamics of the Markov process converges
to the solution of the ODEs. In addition, we also show that the ratios of the states among
the neighbors of any given node is close to the actual state ratios of the entire network.
As a general framework, our analysis can be applied to many opinion spreading processes
in social networks caused by public service advertising, group-targeted marketing, and
external influence [1,10]. Note that our result does not take any structural information of
the network into account. Hence, surprisingly our results show that the MF approximation
holds independently of the network structure, such as the community structure, as long
as the initial states are drawn in an i.i.d. manner.

We adopt the standard (continuous) asynchronous time model [11] to express the state
dynamics, where on average there are n state updates per unit time. Our result can also



be applied to the slotted synchronous time model [4]. The following theorems formalize
our main results.

Theorem 1 Consider a Markov process with a finite state space S on a graph G = (V,E)
so that all nodes are of degrees ω(log n), and with an initial state ratio (si)i∈S ∈ [0, 1]|S|.
For each time t ∈ R+, let a(t) = (ai(t))i∈S be the solution of the system of ODEs that
corresponds to a given Markov process 1. For t ∈ R+, let b(t) = (bi(t))i∈S be the random
variable for the actual state ratio of V . Then, for any constants ε > 0, δ > 0, and T > 0,

Pr

(
sup

0≤t≤T
‖b(t)− a(t)‖1 < ε

)
= 1− o(n−δ). (1)

This means that the overall state ratio of V converges to a(t) uniformly over t ∈ [0, T ]
as n goes to infinity. Furthermore, the state ratio of the neighbors of each node at time
t ∈ [0, T ] is also very close to a(t), as stated in the following theorem.

Theorem 2 For t ∈ R+ and v ∈ V , let bv(t) = (bv,i(t))i∈S be the random variable for
the actual state ratio of the neighbors of v. Under the same condition as in Theorem 1,
for any constants ε > 0, δ > 0, and T > 0,

Pr

(
sup

0≤t≤T,v∈V
‖bv(t)− a(t)‖1 < ε

)
= 1− o(n−δ). (2)

We conducted experiments on the network datasets consisting of two synthetic net-
works (Watts-Strogatz (WS) and the Barabási-Albert (BA)) of 10,000 nodes with average
degree 100, and two real-world networks (ePinions [12] (75,879 nodes with average degree
13.4) and Slashdot [9] (77,360 nodes with average degree 23.4)) 2. The opinion spreading
models we used were the linear threshold model [7] and the ternary voter model [11]. Our
empirical results confirmed that Theorem 1 and Theorem 2 are very accurate for WS and
BA networks, and are validated quite well for real-world networks where the slightly dense
condition is violated. Finally, we present the details of some of the popular Markovian
opinion spreading models where our results can be applied.

• Information diffusion models [3,7,10]: In many information diffusion models, includ-
ing the general threshold model and the independent cascade model, the state space
can be expressed by S = {0(inactive), 1(active)}. In the general threshold model,
each node v becomes active if a function evaluated on the states of its neighbors
exceeds the threshold of v. In the independent cascade model, every adoptor v has
a single chance to influence its non-adopted neighbor u with a certain probability.
Our work can also be applied to non-monotonic information diffusion models, such
as SIS model and its recent variants [3], and the information diffusion model with
external influence [10].

1Solve a(t) by a standard MF method with the system of ODEs.
2http://snap.stanford.edu



• Voter model [5, 11]: In the voter model, the state space corresponds to the set of
candidates or items to vote, and a node v either updates its state by copying that
of its neighbor chosen uniformly at random with some probability, or preserves its
state with the remaining probability.

• Naming game [13,14]: Naming game was originally intended to model language dif-
fusion in a society. This model has been widely used for describing how a multi-agent
system can converge towards a consensus state in a self-organized way. Similarly to
the voter model, a node (listener) is selected, and it interacts with a randomly cho-
sen neighbor (speaker). The speaker randomly selects a language from its language
list and sends it to the listener. Then, the listener updates its language list.
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