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TRANSITIVE-CLOSURE SPANNERS∗
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Abstract. Given a directed graph G = (V, E) and an integer k ≥ 1, a k-transitive-closure-
spanner (k-TC-spanner) of G is a directed graph H = (V, EH) that has (1) the same transitive-closure
as G and (2) diameter at most k. These spanners were implicitly studied in the context of circuit
complexity, data structures, property testing, and access control, and properties of these spanners
have been rediscovered over the span of 20 years. We abstract the common task implicitly tackled in
these diverse applications as the problem of constructing sparse TC-spanners. We initiate the study
of approximability of the size of the sparsest k-TC-spanner of a given directed graph. We completely
resolve the approximability of 2-TC-spanners, showing that it is Θ(logn) unless P = NP. For k > 2,
we present a polynomial time algorithm that finds a k-TC-spanner with size within O((n logn)1−1/k)
of the optimum. Our techniques also yield algorithms with the first nontrivial approximation ratio
for well-studied problems on directed spanners when k > 3: Directed k-Spanner, Client/Server

Directed k-Spanner, and k-Diameter Spanning Subgraph. For constant k ≥ 3, we show that

the size of the sparsest k-TC-spanner is hard to approximate within a factor of 2log
1−ε n for any

ε ∈ (0, 1) unless NP ⊆ DTIME(npolylog n). Finally, we study the size of the sparsest k-TC-spanners
for H-minor-free graph families. Combining our constructions with our insight that 2-TC-spanners
can be used for designing property testers, we obtain a monotonicity tester with O(log2 n/ε) queries
for any poset whose transitive reduction, when viewed as an undirected graph, is free of a fixed
minor. Previously, the best upper bound on the query complexity for such graphs was O(

√
n/ε).

Key words. spanners, approximation algorithms, hardness of approximation, graph separators

AMS subject classifications. 68R10, 05C85, 68W25

DOI. 10.1137/110826655

1. Introduction. A spanner can be thought of as a sparse backbone of a graph
that approximately preserves distances between every pair of vertices. More precisely,
a subgraph H = (V,EH) is a k-spanner of G = (V,E) if for every pair of vertices
u, v ∈ V , the shortest path distance dH(u, v) from u to v in H is at most k · dG(u, v).
Since they were introduced by Awerbuch [11] and Peleg and Schäffer [58] in the con-
text of distributed computing, spanners for undirected graphs have been extensively
studied. The tradeoff between the parameter k, called the stretch, and the number of
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TRANSITIVE-CLOSURE SPANNERS 1381

edges in a spanner is relatively well understood: for every k ≥ 1, any undirected graph
on n vertices has a (2k − 1)-spanner with O(n1+1/k) edges [6, 57, 73]. This is known
to be tight for k = 1, 2, 3, 5 and is conjectured to be tight for all k (see, for example,
a survey by Zwick [76]). Undirected spanners have numerous applications, such as
efficient routing [26, 27, 60, 63, 72], simulating synchronized protocols in unsynchro-
nized networks [59], parallel and distributed algorithms for approximating shortest
paths [24, 25, 32], and algorithms for distance oracles [12, 73].

In the setting of directed graphs, two notions of spanners have been considered
in the literature: the direct generalization of the above definition [58], and roundtrip
spanners [27, 63]. In this paper, we introduce a new definition of directed spanners
that captures the notion that a spanner should have a small diameter but preserve
the connectivity of the original graph. By diameter,1 we mean the largest distance
between a pair (u, v) of nodes in a directed graph such that v is reachable from u.

Definition 1.1 (TC-spanner). Given a directed graph G = (V,E) and an integer
k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) is a directed graph H =
(V,EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) < ∞, then dH(u, v) ≤ k.

The first property ensures that only the vertices that are connected in G will remain
connected in the spanner. The second property guarantees that distances between
connected pairs of vertices are small. The edges from the transitive closure of G
that are added to G to obtain a TC-spanner are called shortcuts. Notice that a k-
TC-spanner of G is a directed k-spanner of the transitive-closure of G. Nevertheless,
TC-spanners are interesting in their own right due to the multiple TC-spanner-specific
applications we present in section 1.3.

Our contributions. The contributions of this work fall into three categories: (1) We
bring several diverse applications, including property testing, access control, and data
structures, under the unifying framework of TC-spanners. These applications are
discussed in section 1.3. (2) We initiate the study of the computational problem of
finding the size of the sparsest k-TC-spanner of a given graph, which we refer to as
k-TC-Spanner. We present several approximability and hardness results for k-TC-

Spanner and its well studied variants. (3) Finally, we construct sparse TC-spanners
for the family of H-minor free graphs, which include planar, bounded-treewidth, and
bounded-genus graphs. Our constructions yield new algorithms and data structures
for the application areas we discuss in section 1.3. Our results, described in items (2)
and (3) above, are presented in section 1.2.

1.1. Related work. For a directed graph G, we denote the size of (that is, the
number of edges in) the sparsest k-TC-spanner of G by Sk(G). To put the following
results in proper context, observe that if G has n vertices, Sk(G) is O(n2). This
upper bound is tight, in general, as witnessed by the complete bipartite graph with
n/2 vertices in each part, and all edges directed from one part to the other.

1.1.1. Approximability of directed spanner problems. k-TC-Spanner is
a special case of a well-studied problem, called Directed k-Spanner, of finding
the size of the sparsest k-spanner of a given (not necessarily transitively closed) di-
rected graph. All algorithms for Directed k-Spanner immediately yield algorithms

1The definition of diameter used in this paper is nonstandard. The diameter is usually defined
as the largest distance between a pair of nodes in a graph, and is set to infinity if a graph contains
a pair of nodes with no path from one to the other.
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1382 BHATTACHARYYA ET AL.

for k-TC-Spanner with the same approximation ratio. Elkin and Peleg [34] gave
an O(log n)-approximation algorithm for Directed 2-Spanner, and Kortsarz [50]
showed that this approximation ratio cannot be improved unless P = NP. For k = 3,
Elkin and Peleg [35] presented an Õ(m1/3)-approximation algorithm, where m is the
number of edges in the graph. Thus, in the worst case, their approximation ratio is
Õ(n2/3). Their algorithm is quite complicated. For k ≥ 4, approximation algorithms
with ratios sublinear in n were known only in the undirected setting [58].

Elkin and Peleg [33] demonstrated that for all constant k > 2 and ε ∈ (0, 1), it is

impossible to approximate Directed k-Spanner within a factor of 2log
1−ε n, assum-

ing NP �⊆DTIME(npoly logn). Moreover, Elkin and Peleg [36] extended this result to
3 ≤ k = O(n1−δ) for all δ ∈ (0, 1). Thus, according to Arora and Lund’s classification
[48] of NP-hard problems, Directed k-Spanner is in class III, for 3 ≤ k = O(n1−δ).
Moreover, [36] showed that proving that Directed k-Spanner is in class IV, that
is, inapproximable within nδ for some δ ∈ (0, 1), would resolve a longstanding open
question in complexity theory, collapsing classes III and IV into a single class.

1.1.2. Approximability of more general problems. Dodis and Khanna [30]
studied the problem of finding the minimum-cost subset of missing edges that can
be added to a (directed) graph G, with costs and lengths associated to the missing
edges, so as to ensure that that there is a path of length at most k between every pair
of nodes (not only those connected in G). Observe that k-TC-Spanner is a special
case of that problem: we can let G be the transitive reduction (see the definition
in section 1.4) of the input graph to k-TC-Spanner, for all edges in the transitive
closure of G set the length to 1 and cost to 1, and for the remaining edges set the
length to k and cost to 0. Given this instance, the algorithm of Dodis and Khanna
will produce a k-TC-spanner. However, their analysis guarantees only that the size
of the resulting k-TC-spanner is at most |E(G)| + O(OPT · n log k), where OPT is
the number of missing edges that need to be added. If |E(G)| = OPT = Θ(n),
their algorithm may return a k-TC-spanner with Ω(n2) edges. Thus, in general, the
resulting approximation ratio is no better than O(n). Since their problem is more
general, their hardness results do not apply to TC-spanners.

Chekuri et al. [23] gave an O(p1/2+ε)-approximation algorithm for the directed
Steiner network problem where, given a digraph and node pairs (s1, t1), . . . , (sp, tp),
the goal is to connect all pairs with as few edges as possible. We can reduce k-TC-

Spanner to this problem by specifying all comparable pairs of nodes in levels 1 and
k + 2 in the k + 1-extension of G (see Definition 5.5 of [30]). However, their ratio is
only O(n1+ε) when p = Ω(n2), and thus the resulting ratio for k-TC-Spanner is no
better than O(n).

1.1.3. Structural results for Sk(G). In order to reduce space used by parallel
reachability oracles, Thorup [68] considered a special case of TC-spanners. He studied
TC-spanners of a graphG that have at most twice as many edges asG, and conjectured
that for all directed graphs G on n nodes there are such TC-spanners with stretch
polylogarithmic in n. He proved his conjecture for planar graphs [69], achieving stretch
O(log4 n) for this case. But the conjecture for general graphs was later disproved by
Hesse [47], who showed that for all small ε > 0, there exist graphs with n1+ε edges
for which all nε-TC-spanners must have Ω(n2−ε) edges.

TC-spanners were also studied, implicitly in [21, 20, 5, 10, 22, 29, 75] and explicitly
in [19, 70], for simple families of graphs, such as the directed line Ln, consisting of
nodes {1, 2, . . . , n} and edges {(i, i+ 1) : 1 ≤ i ≤ n − 1}, and arborescences (i.e.,
directed trees). Chandra, Fortune, and Lipton [21, 20] implicitly gave tight bounds
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TRANSITIVE-CLOSURE SPANNERS 1383

on Sk(Ln) in the context of work on circuit complexity. They showed that the size of
the sparsest k-TC-spanner for the directed line is Θ(n ·λk(n)), where λk(n) is the kth-
row inverse Ackermann function (see section 1.4 for the definition). In particular, the
sizes of the sparsest k-TC-spanners for the line for small k are S2(Ln) = Θ(n logn),
S3(Ln) = Θ(n log logn), and S4(Ln) = Θ(n log∗ n). Alon and Schieber [5] also showed
that the smallest k for which Sk(Ln) = O(n) is O(α(n)), where α() is the inverse
Ackermann function defined in section 1.4. Note that Sk(Ln) ≥ n− 1 for all k, since
all edges of the form (i, i+ 1) have to be present in a TC-spanner to ensure the same
connectivity as in Ln. Alon and Schieber [5], Chazelle [22], and Thorup [70] showed
that Sk for arborescences is asymptotically the same as for the line.

There has also been study of graph-theoretic notions that are similar in spirit to,
although distinct from, TC-spanners. For example, Cohen [25] constructed sparse hop
sets. A (d, ε)-hop set for a weighted undirected graph G = (V,E) is a weighted graph
G′ = (V,E∪E′) such that for any two vertices u, v ∈ V , the graph G′ contains a path
from u to v of at most d edges and of weight within 1 + ε of the minimum weight
path in G. Hop sets also reduce diameter by adding extra edges, but the problems are
incomparable because TC-spanners are defined on unweighted and directed graphs.

1.2. Our results. In this section, we describe our algorithms and inapproxima-
bility results for k-TC-Spanner, Directed k-Spanner and well-studied variants
of these problems, and our construction of sparse TC-spanners for the family of H-
minor free graphs. Tables 1.1 and 1.2 summarize our (and previously known) results
on the approximability of k-TC-Spanner. Subsequent algorithmic developments are
described in section 1.5. All our hardness and structural results were still the best
known when this paper was last revised.

1.2.1. Algorithms for k-TC-SPANNER and related problems. We present
two deterministic polynomial time approximation algorithms for k-TC-Spanner.
Our first algorithm uses a new combination of linear programming and sampling,
and gives an O((n log n)1−1/k)-ratio for k-TC-Spanner. In fact, the algorithm also

Table 1.1

Summary of algorithmic results on k-TC-Spanner.

Setting of k Approximability Notes Reference

k = 2 O(logn) [34]

k = 3 O(n2/3 polylogn) [33]

k > 2 O((n logn)1−1/k) Applies to
Directed k-Spanner

This work

k = Ω
(

log n
log log n

)
O
(

n log n
k2+k log n

)
Separation from
Directed k-Spanner

This work

Table 1.2

Summary of hardness results on k-TC-Spanner, all from this paper.

Setting of k Inapproximability Assumption Notes

k = 2 Ω(logn) P �= NP Matches the up-
per bound

constant k Ω(2log
1−ε n) NP ⊆ DTIME(npoly logn) Improvement

implies break-
through

k = n1−ε for
all ε > 0

Ω(1 + γ) for some
γ = Ω(1/k)

P �= NP
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1384 BHATTACHARYYA ET AL.

applies to the more general Directed k-Spanner problem. This resolves the open
question of finding a sublinear approximation ratio for the Directed k-Spanner
problem for k > 3, described as a “challenging direction” by Elkin and Peleg [35].
Moreover, our algorithm for k = 3 is simpler than the O(n2/3 polylogn)-approximation
algorithm of [35].

Our algorithm produces the spanner by taking a union of edge sets of two graphs.
The first graph is obtained by formulating the problem as an integer program, solv-
ing a linear programming relaxation, and rounding the solution. The second graph
is formed by sampling vertices from G uniformly at random and growing breadth-
first search (BFS) arborescences around them. We give a simple greedy algorithm
that derandomizes the sampling procedure. The sampling step, consisting of growing
BFS arborescences rooted at random vertices, without the combination with linear
programming, was previously employed by Aingworth et al. [4] and Dor, Halperin,
and Zwick [31] in efficient algorithms for approximating all pairs shortest paths in
unweighted undirected graphs. Their algorithms construct a weighted graph that em-
ulates distances in a given unweighted undirected graph with small additive error.
The combination of linear programming and sampling was used by Kortsarz and Pe-
leg [52] to build low-degree undirected 2-spanners. Their sampling consists of adding
each edge to the spanner independently and their linear program is a special case of
the linear program we use (with a different objective).

Our algorithmic technique also yields sublinear approximation ratios for well-
studied variants of the Directed k-Spanner problem: O((n log n)1−1/k) for k-
Diameter Spanning Subgraph and O(n1−1/(2k−1)+ε) for Client/Server

Directed k-Spanner (see [34] for definitions). For the last problem, we use some
additional ideas that were formulated by Feldman, Kortsarz, and Nutov in [40] in the
course of designing an algorithm for the Directed Steiner Forest problem.

Our second algorithm has an Õ(n/k2) ratio for k-TC-Spanner. This demon-
strates a separation between k-TC-Spanner andDirected k-Spanner: for k =

√
n,

it gives O(log n)-approximation for k-TC-Spanner while Elkin and Peleg [36, Theo-

rem 6.6] showed that Directed

√
n-Spanner is 2log

1−ε n-inapproximable. Moreover,
Hesse [47] asks for an algorithm to add O(|G|) “shortcuts” to a digraph and reduce its
diameter to

√
n. Our second algorithm returns a

√
n-TC-spanner of size O(|G|+log n),

answering his question.

1.2.2. Inapproximability of k-TC-SPANNER. We present three results on
the hardness of k-TC-Spanner, applicable for different values of k. First, we prove
for k = 2 that the O(log n) ratio of Kortsarz and Peleg [51] is optimal unless P = NP.
Next, for constant k > 2, we show that k-TC-Spanner is inapproximable within
a factor of 2log

1−ε n, for all ε ∈ (0, 1), unless NP ⊆ DTIME(npolylogn). This result
is our main technical contribution. Observe that a stronger inapproximability result
for k > 2 would imply the same inaproximability for Directed-k-Spanner, and
as shown by Elkin and Peleg [36], collapse classes III and IV in Arora and Lund’s
classification. Finally, we show that for any k < n1−ε for any ε > 0, k-TC-Spanner

is inapproximable to within a factor of 1 + γ for some γ = Ω(1/k), unless P = NP.

Our 2log
1−ε n-hardness matches the known hardness for Directed k-Spanner

for constant k > 2. As is the case for Directed k-Spanner, we start by building a
directed graph from a well-known hard problem called Min-Rep, which has the same
inapproximability as Symmetric Label Cover. However, as illustrated in section 3,
all known hard instances for Directed k-Spanner cannot imply better than Ω(1)-
hardness for k-TC-Spanner. Intuitively, our lower bound is much harder to prove
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TRANSITIVE-CLOSURE SPANNERS 1385

than the one for Directed k-Spanner since our instance must be transitively closed,
and thus, many more “shortcut” routes between pairs of vertices exist. We use the
generalized butterfly graphs, defined by Woodruff [74], and the broom graphs to
construct hard instances of k-TC-Spanner. Our reduction transforms the Min-Rep

problem to make it noise-resilient. We call a Min-Rep instance noise-resilient to
indicate that its structure is preserved under small perturbations. The paths in a
generalized butterfly are well-structured, which allows us to analyze many different
routes possible in the transitive closure.

1.2.3. Structural results. Finally, we construct sparse TC-spanners for a spe-
cific graph family: H-minor-free graphs. A graph H is a minor of G if H is a (not
necessarily induced) subgraph of a graph obtained from G by a sequence of edge con-
tractions. A graph family F is minor-closed if it contains every minor of every graph
in F . For a finitely large graph set H, a minor-closed family F is H-minor-free if for
all H ∈ H, H /∈ F . For example, planar graphs are H-minor-free for H = {K5,K3,3}.
Note that this means planar graphs are, in particular, K5-minor-free. In addition to
planar graphs, H-minor-free families include bounded-treewidth and bounded-genus
graphs, explicitly studied in applications described in section 1.3. Indeed, the cel-
ebrated Robertson–Seymour theorem shows that any minor-closed family of graphs
can be defined by a finite set of forbidden minors. All H-minor-free graphs are sparse,
i.e., have a linear number of edges [55].

We show that if the transitive reduction of a directed graph G, disregarding edge
orientations, is an undirected graph that excludes a fixed minor H , then there is an
efficient construction of a 2-TC-spanner of G of size O(n log2 n) and, more generally,
for any constant k, a k-TC-spanner of size O(n·logn·λk(n)), where λk(·) is the kth-row
inverse Ackermann function. The former result is tight because it gives a O(n log2 n)
bound on the size of a 2-TC-spanner of any planar graph and, in particular, a directed
2-dimensional grid, for which Berman et al. [13] subsequently proved a matching lower
bound. Our result on TC-spanners of H-minor-free graphs allowed us to drastically
improve monotonicity testers of Fischer et al. [42]. The application to monotonicity
testing and our improvement are described in section 1.3.

The main idea in our construction is the use of the path separators for undirected
H-minor free graphs due to Abraham and Gavoille [1]. However, although the sepa-
rators are undirected paths, in our digraph they may be the union of many dipaths,
and so we cannot efficiently recurse using the sparse k-TC-spanners for the directed
line, described in section 1.1.3. We observe that these separators satisfy a stronger
property than claimed in [1], effectively allowing us to encode the direction of edges
in a cost function associated with the separators.

As mentioned in section 1.1.3, Thorup [69] constructed polylog(n)-TC-spanners
of size O(n) for digraphs with planar transitive reductions. His idea was to apply a
TC-spanner construction for arborescences in a certain recursive way. There are two
reasons why Thorup’s method does not easily extend to give our results. First, his
reduction from planar graphs to arborescences depends on the Jordan curve theorem,
and so, it cannot be modified straightforwardly to work for H-minor-free graphs.
Second, his reduction blows up the stretch of the spanner by a polylogarithmic factor,
while our construction produces spanners of constant stretch.

1.3. Applications of TC-spanners. We describe three applications that use
sparse TC-spanners: monotonicity testing, key management in an access hierarchy,
and data structures for computing partial products in a semigroup.
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1.3.1. Monotonicity testing. Monotonicity of functions [3, 29, 38, 41, 42, 44,
46] is one of the most studied properties in property testing [45, 64]. Fischer et al.
[42] prove that testing monotonicity is equivalent to several other testing problems.
Let Vn be a poset of n elements and let Gn = (Vn, E) be the relation graph, i.e., the
Hasse diagram, for Vn. A function f : Vn → R is called monotone if f(x) ≤ f(y) for
all (x, y) ∈ E. We say f is ε-far from monotone if f has to be changed on at least
an ε fraction of the domain to become monotone, that is, minmonotone g |{x : f(x) �=
g(x)}| ≥ εn. A monotonicity tester on Gn is an algorithm that, given an oracle for
a function f : Vn → R, passes if f is monotone but fails with probability ≥ 2

3 if f
is ε-far from monotone. The optimal monotonicity tester for the directed line Ln,
proposed by Dodis et al. [29], is based on the sparsest 2-TC-spanner for that graph.
Implicit in the proof of Proposition 9 in [29] is a lemma relating the complexity of a
monotonicity tester for Ln to the size of a 2-TC-spanner for Ln. We generalize this
by observing that a sparse 2-TC-spanner for any partial order graph Gn implies an
efficient monotonicity tester on Gn.

Lemma 1.2. If a directed acyclic graph Gn has a 2-TC-spanner with s(n) edges,

then there exists a monotonicity tester on Gn that runs in time O( s(n)εn ).

Proof. The tester selects 8s(n)
εn edges of the 2-TC-spannerH uniformly at random.

It queries the input function f on the endpoints of all the selected edges and rejects
if some selected edge (x, y) is violated by f , that is, f(x) > f(y).

If the function f is monotone on Gn, the algorithm always accepts. The crux of
the proof is to show that functions that are ε-far from monotone are rejected with
probability at least 2

3 . Let f : Vn → R be a function that is ε-far from monotone. It is
enough to demonstrate that f violates at least εn

4 edges in H . Then each selected edge
is violated with probability εn

4s(n) , and the lemma follows by elementary probability

theory.
Denote the transitive closure of Gn by TC(Gn). We say a vertex x ∈ Vn is

assigned a bad label by f if x has an incident violated edge in TC(Gn); otherwise,
x has a good label. Let V ′ be a set of vertices with good labels. Observe that f is
monotone on the induced subgraph G′ = (V ′, E′) of TC(Gn). This implies (see [42],
Lemma 1) that f can be changed into a monotone function by modifying it on at
most |Vn − V ′| vertices. Since f is ε-far from monotone, it shows that there are at
least εn vertices with bad labels.

Every function that is ε-far from monotone has a matching M of at least εn
2

violated edges in TC(Gn) [29]. We will establish a map from the set of edges in M to
the set of violated edges in H , so that each violated edge in H is the image of at most
two edges in M . For each edge (x, y) in the matching, consider the corresponding path
from x to y of length at most 2 in the 2-TC-spanner H . If the path is of length 1,
(x, y) is the violated edge in H corresponding to the matching edge (x, y). Otherwise,
let (x, z, y) be a path of length 2 in H . At least one of the edges (x, z) and (z, y) is
violated, and we map (x, y) to that edge. Since M is a matching, at most two edges
in M can be mapped to one violated edge in H . Thus, the 2-TC-spanner H has ≥ εn

4
violated edges, as required.

The fact that H is a 2-TC-spanner is crucial for the proof. If it was a k-TC-
spanner for k > 2, the path of length k from x to y might not have any violated
edges incident to x or y, even if f(x) > f(y). Consider G2n = (V2n, E), where
V2n = {x1, . . . , x2n}, E = {(xi, xn) | i < n} ∪ (xn, xn+1) ∪ {(xn+1, xj) | j > n + 1}.
G2n is a 3-TC-spanner of itself. Now set f(xi) = 1 for i ≤ n and f(xi) = 0 otherwise.
Clearly, this function is 1

2 -far from monotone, but only one edge, (xn, xn+1), is violated
in the 3-TC-spanner.
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By Lemma 1.2, all the 2-TC-spanner constructions described in this paper yield
monotonicity testers for functions defined on the corresponding posets. Moreover,
for H-minor free graphs, the resulting tester has much better query complexity than
the previously known one due to Fischer et al. [42]. Indeed, we achieve testers with
O(log2 n/ε) queries, whereas the best previously known bound was O(

√
n/ε).

1.3.2. Key management in an access hierarchy. In the problem of key
management in an access hierarchy, there is a partially ordered set (poset) of access
classes and a key associated with each class. This is modeled by a directed graph G
whose nodes are classes and whose edges indicate an ordering. A user is entitled to
access a certain class and all classes reachable from it. This problem arises in content
distribution, operating systems, and project development (see, e.g., the references in
[10]). One approach to the key management problem [9, 10, 65] is to associate public
information P (i, j) with each edge (i, j) ∈ G and a secret key ki with each node i.
There is an efficient algorithm A which takes ki and P (i, j) and generates kj . However,
for each (i, j) in G, it is computationally hard to generate kj without knowledge of ki.
To obtain a key kv from a key ku, algorithm A is run dG(u, v) times. To speed this
up, [10] suggest adding edges to G to increase connectivity. To preserve the access
hierarchy of G, new edges must be from the transitive closure of G. The number of
edges added corresponds to the space complexity of the scheme, while the shortest-
path distances correspond to the time complexity. Implicit in [10] are TC-spanners
for arborescences with k = 3 and size O(n log logn) and also with k = O(log logn)
and size O(n). Our results for H-minor free graphs extend the known posets for which
access control schemes have O(n polylogn) storage and O(1) key derivation time.

1.3.3. Partial semigroup products, Euclidean spanners, and other ap-
plications. Yao [75] and Alon and Schieber [5] studied space-efficient data structures
for the following problem: Preprocess elements {s1, . . . , sn} of a semigroup (S, ◦), such
as (R,min), to be able to compute partial products si◦si+1◦· · ·◦sj for all 1 ≤ i < j ≤ n
with at most k queries to a small database of precomputed partial products. This
problem reduces to finding a sparsest k-TC-spanner for a directed line Ln+1.

Chazelle [22] and Alon and Schieber [5] also consider a generalization of the above
problem, where the input is an (undirected) tree T with an element si of a semigroup
associated with each vertex i. The goal is to create a space-efficient data structure that
allows us to compute the product of elements associated with all vertices on the path
from i to j, for all vertices i, j in T . As before, only k queries to the data structure are
allowed for each product computation. The generalized problem reduces to finding
a sparsest k-TC-spanner for an arborescence T ′ obtained from T by appending a
new vertex to each leaf, and then selecting an arbitrary root and directing all edges
away from it. A k-TC-spanner for T ′ with s(n) edges yields a preprocessing scheme
with space complexity s(n) for computing products on T with at most 2k queries
as follows. The database stores a product sv1 ◦ · · · ◦ svt for each k-TC-spanner edge
(v1, vt+1) if the endpoints of that edge are connected by the path v1, . . . , vt, vt+1 in
T ′. Let LCA(u, v) denote the lowest common ancestor of u and v in T . To compute
the product corresponding to a path from u to v in T , we consider 2 cases: (1) if
u is an ancestor of v (or vice versa) in T , query the products corresponding to the
k-TC-spanner edges on the shortest path from u to a child of v (from v to a child
of u, respectively); (2) otherwise, make queries corresponding to the k-TC-spanner
edges on the shortest path from LCA(u, v) to a child of u and on the shortest path
from a child of LCA(u, v) nearest to u to a child of u. This gives a total of at most
2k queries.
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TC-spanners for arborescences have also been a key technical tool for construct-
ing low-diameter Euclidean spanners, an extensively studied object in computational
geometry [7, 56, 67, 66]. Here, one is given an undirected weighted complete graph
on a vertex set S, identified with a set of points in R

d, where d ≥ 1. The weight of
each edge is the Euclidean distance between the endpoints. A Euclidean t-spanner
of diameter k is a subset E of edges which, for any two points x, y ∈ S, contains
a path from x to y of total weight at most t · ‖x − y‖ and with at most k edges.
It is easy to verify that a k-TC-spanner for the directed line Ln gives a Euclidean
1-spanner of diameter k for n points in 1 dimension. Extending this idea, Arya et al.
[7] showed that Euclidean spanners for point sets in higher dimensions can be con-
structed from 1-spanners of diameter k for tree metrics. A 1-spanner of diameter k
of a weighted undirected tree T = (V,E) is a graph G = (V,E ∪ E′), where E′ is a
set of weighted undirected edges over the vertex set V , such that for any two vertices
u, v ∈ V , the unweighted distance between u and v in G is at most k and the weighted
distance between u and v in G equals the weighted distance in T . A 1-spanner of
diameter k for a tree is clearly also a k-TC-spanner for the arborescence obtained by
directing all tree edges outwards from the root, and an argument analogous to the
one in the previous paragraph shows that a k-TC-spanner of an arborescence gives a
1-spanner of diameter 2k for the underlying undirected tree. Through this connection,
the previously described TC-spanner constructions in [5] allowed Arya et al. [7] to
get 1-spanners for tree metrics and, from there, low-diameter Euclidean spanners for
arbitrary dimensions.

Another beautiful application of TC-spanners was discovered by Thorup in [68],
although he realized only later the connection to the previous work on the semigroup
problem. Thorup showed that if there exists a k-TC-spanner of size s for a directed
graph G on n vertices, then there is a concurrent-read-concurrent-write (CRCW) par-
allel algorithm with running time O(k), number of processors s, and space O(n) that
decides reachability from a distinguished vertex v in G. In separate work, Bodlaender,
Tel, and Santoro [19] studied the nonreversing diameter problem, which is intimately
related to the Euclidean spanner problem mentioned above and, hence, also to the
TC-spanner problem. There, they discuss some other algorithmic applications which
benefit from sparse TC-spanner constructions.

1.4. Preliminaries and notation. We write u�G v to denote that a vertex v
is reachable from a vertex u in a graph G. When the graph is clear from the context,
we omit G. The transitive closure of a directed graph G = (V,E), denoted TC(G),
is the directed graph (V,E′), where E′ = {(u, v) : u �G v}. Vertices u and v are
comparable if either (u, v) ∈ TC(G) or (v, u) ∈ TC(G).

A transitive reduction of G, denoted TR(G), is a digraph G′ with the fewest edges
for which TC(G′) = TC(G). As shown by Aho, Garey, and Ullman [2], TR(G) can
be computed efficiently via a greedy algorithm.2 For directed acyclic graphs TR(G)
is unique. We say G is transitively reduced if TR(G) = G.

In the context of building TC-spanners, we call an edge a shortcut edge if it is in
TC(G) but not in G.

A digraph G is weakly connected if replacing each directed edge in G with an undi-
rected edge results in a connected undirected graph. A digraph is strongly connected

2The algorithm contracts each strongly connected component C to a vertex v(C) to get a super-
graph H, obtains a supergraph H′ by greedily removing arcs in H that do not change its transitive
closure, and finally uncontracts the v(C), choosing a representative vertex of C to be incident to the
edges incident to v(C) in H′.
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if each vertex in the graph is reachable from every other vertex via a directed path.
The graph of strongly connected components of a digraph G is the digraph obtained
by contracting each strongly connected component into one vertex, while maintaining
all the edges between these components.

We will need a variant of the family of Ackermann functions. Define the following
two families of functions:

A(0, j) = 2j for j ≥ 1,

A(i, 0) = 1 for i ≥ 1,

A(i, j) = A(i − 1, A(i, j − 1)) for i, j ≥ 1

B(0, j) = j2 for j ≥ 1,

B(i, 0) = 2 for i ≥ 1,

B(i, j) = B(i− 1, B(i, j − 1)) for i, j ≥ 1.

The inverse Ackermann function is α(n) = min{i : A(i, i) ≥ n}. For i = 2k,
the ith-row inverse is λi(n) = min{j : A(k, j) ≥ n} and for i = 2k + 1, λi(n) =
min{j : B(k, j) ≥ n}. Explicitly, for all n ≥ 0, λ0(n) = 
n/2�, λ1(n) = 
√n�,
λ2(n) = 
logn�, λ3(n) = 
log logn�, λ4(n) = 
log∗ n�, λ5(n) = � 1

2 log
∗ n�, etc. One

useful identity satisfied by these functions is that λk(n) = 1 + λk(λk−2(n)).

1.5. New developments. After the publication of the conference version of this
paper in SODA 2009 [18], several follow-up works appeared. Our two algorithms were
improved, new structural results and more applications of such results were presented,
and a new variant of k-TC-Spanner was studied.

First, our approximation ratio of Õ(n1−1/k) for Directed k-Spanner for k > 2
was improved to Õ(n1−1/�k/2�) by Berman, Raskhodnikova, and Ruan [16]. Then
Dinitz and Krauthgamer [28] gave an alternative Õ(n1/2)-approximation algorithm
for k = 3 and achieved Õ(n2/3) ratio for k > 3. Later, Berman et al. [14] improved
the approximation ratio to Õ(n1/3) for k = 3 and to Õ(

√
n) for k > 3. The algo-

rithm for k = 3 in [14] also gave the first improvement in the approximation ratio
for Undirected 3-Spanner in two decades. We note that all algorithms in [28, 14]
build off of our hybrid approach of solving a linear program and randomly sam-
pling vertices and growing BFS arborescences around the samples. The new ideas
in these subsequent works can also be used to improve the approximation ratio for
the Client/Server Directed k-Spanner problem considered in this paper. In
addition, our O((n log n)/(k2 + k logn)) approximation ratio for k-TC-Spanner was
improved to O(n/k2) in [16].

Second, Bhattacharyya et al. [17] and Jha and Raskhodnikova [49] proposed new
applications of structural results on TC-spanners to local monotonicity reconstruction
and to testing and local reconstruction of the Lipschitz property, respectively. Bhat-
tacharyya et al. [17] also presented nearly tight bounds on the size of TC-spanners of
the hypercube and the hypergrid. Their lower bound for the hypergrid was improved
by Berman et al. [13]. In addition, Berman, Raskhodnikova, and Ruan [16] gave
structural results relating the sizes of the sparsest 2-TC-spanners and k-TC-spanners
for k > 2.

Third, Atallah et al. [8], De Santis, Ferrara, and Masucci [65], and Berman et al.
[13] studied a new variant of TC-spanners, called Steiner TC-spanners, where new
(Steiner) nodes can be inserted into a TC-spanner, in addition to new shortcut edges,
while ensuring that every pair of non-Steiner nodes is connected by a path in the
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TC-spanner iff it was connected in the original graph. They showed that for many
digraphs, Steiner nodes can drastically reduce the size of a k-TC-Spanner [8, 65, 13],
though for hypergrids their effect is limited [13].

For a more detailed description of recent results, we refer the reader to the survey
by Raskhodnikova [61].

1.6. Organization. Section 2 describes our approximation algorithms for k-
TC-Spanner and related problems. In section 3, we present our hardness results.
Section 4 describes our construction for H-minor-free graphs.

2. Algorithms for k-TC-SPANNER and related problems. In this section,
we present two approximation algorithms for k-TC-Spanner. The first one, pre-
sented in section 2.1, gives a better approximation ratio for small k and also applies
to other related problems. The second one, presented in section 2.2, gives a better
approximation for large k, and is specific to k-TC-Spanner.

For both algorithms, we assume that the input digraph G is weakly connected. If
this does not hold, our algorithms can be run on each weakly connected component
separately.

2.1. Algorithm for DIRECTED k-SPANNER. OurO((n log n)1−1/k)-approxi-
mation for Directed k-Spanner for arbitrary k is based on a new combination of
linear programming and sampling. Our technique also achieves an O((n log n)1−1/k)
ratio for the k-Diameter Spanning Subgraph and an Õ(n1−1/(2k−1)+ε) ratio for
the Client/Server Directed k-Spanner, problems considered in [35]. Previously,
no o(n)-approximation algorithms were known for these problems.

Our result for Directed k-Spanner is stated below in Theorem 2.1. To achieve
the same result for k-TC-Spanner, it suffices to run the algorithm on the transitive
closure of the input digraph. The extensions to the other problems are described in
this section in Theorem 2.8.

Theorem 2.1. For any (not necessarily constant) k ≥ 2, there is a determin-
istic polynomial time algorithm for Directed k-Spanner with approximation ratio
O((n log n)1−1/k).

Our algorithm produces the spanner by taking a union of edge sets of two graphs.
The first graph is obtained by formulating the problem as an integer program, solving
a linear programming (LP) relaxation, and rounding the solution. The second graph
is formed by sampling vertices from G uniformly at random and growing BFS arbores-
cences around them; later, we show how to derandomize the sampling procedure.

We start by describing the LP relaxation. Let G be the input digraph. One can
introduce binary edge variables xe for each edge e in G, and binary path variables yP
for each path P of length at most k in G. One can impose the constraints yP ≤ xe

for each e ∈ P , which allow a path P in the spanner only if all edges along it are
present. Then add constraints

∑
P yP ≥ 1 for all edges (u, v) ∈ G, where the sum is

over paths P of length at most k from u to v. Finally, one can relax the problem to
an LP, and try to round the solution.

The first problem is that the integrality gap seems to be quite bad, which may be
why an LP approach had not been considered before. Indeed, at an intuitive level, if
there are Θ(n) paths of length at most k (say, for constant k) between u and v, the LP
might assign each of them a value of Θ(1/n). The second problem with this approach
is that the number of variables and the size of the constraints grow exponentially
with k. We resolve both problems by treating edges (u, v) with a large number of
paths of length at most k from u to v separately from the remaining edges.
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Definition 2.2 (central edges). Let b = (n logn)1−1/k, where n is the number
of nodes in the input graph G and k is the desired stretch of a TC-spanner of G. We
call an edge (u, v) of G central if there are more than b (not necessarily simple) paths
from u to v in G containing at most k edges. Otherwise, (u, v) is noncentral.

We (1) introduce constraints
∑

P yP ≥ 1 only for noncentral edges (u, v); (2) sam-
ple additional nodes uniformly at random and grow BFS arborescences around them
to ensure that central edges (u, v) are “covered” by short paths in the spanner. Since
there are numerous paths of length at most k from u to v, they contain many vertices,
and we are likely to sample one of them.

Definition 2.3 (BFS(w)). Let w be a vertex in G. Then BFSout(w) is a
shortest path out-arborescence rooted at w, consisting of edges in G directed away
from w. Similarly, BFSin(w) is a shortest path in-arborescence rooted at w, consisting
of edges in G directed towards w. BFS(w) is the set of edges obtained as the union
of BFSout(w) and BFSin(w). It contains at most 2(n− 1) edges.

If w is on a path of length at most k from u to v, then the path from u to v along
the edges in BFS(w) also has length at most k. Therefore, combining the solutions
resulting from the LP rounding and from sampling ensures that both central and
noncentral edges (u, v) are “covered” by short paths in the spanner.

Proof of Theorem 2.1. Consider the following integer programming (IP) formula-
tion. For each edge e in the input digraph G, we introduce a variable xe indicating
whether xe occurs in the k-spanner. For each noncentral edge (u, v) and each such
path P , we introduce a variable yP indicating whether all of the edges of P occur in
the k-spanner.

minimize
∑
e∈G

xe

subject to
∑

P from u to v, |P |≤k yP ≥ 1 ∀ noncentral (u, v) ∈ G

yP ≤ xe ∀P and ∀e ∈ P
xe, yP ∈ {0, 1} ∀e ∀P .

(2.1)

The first constraint ensures that the spanner contains at least one path of length
at most k spanning each noncentral edge (u, v), while the second constraint allows a
path to be included only if each of its edges is also in the spanner. Thus, any directed
k-spanner satisfies the constraints of this program.

This integer program can be computed in polynomial time, and therefore, is of
polynomial size. More specifically, for each edge (u, v), one can compute b shortest
paths in O(m + n logn + b log b) time, where n is the number of nodes and m is the
number of edges in G [37], and hence, the time needed to write down the program is
O(m2).

Algorithm. Spanner Generation (Input: directed graph G = (V,E) on n

vertices, stretch k).
1. Take integer program (2.1), relax the constraints xe, yP ∈ {0, 1} to xe ∈

[0, 1], yP ∈ R, and let x∗, y∗ be the solution to the resulting LP.
2. Initialize the spanner edge set EH to ∅, and let b = (n logn)1−1/k.
3. For each edge e in E, if x∗

e ≥ 1/b, add e to EH .
4. Sample a set Z = {z1, . . . , zr} of r = 3 ln 2 · b vertices from V uniformly

with replacement.
5. For each i ≤ r, add BFS(zi) to EH .
6. Output H = (V,EH).

Lemma 2.4. With probability at least 1− 1/n, H is a directed k-spanner of G.

D
ow

nl
oa

de
d 

09
/2

6/
13

 to
 1

47
.4

6.
11

5.
20

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1392 BHATTACHARYYA ET AL.

Proof. Consider a noncentral edge (u, v) in G. By the first constraint of (2.1),
there exists a path P from u to v of length ≤ k for which y∗P ≥ 1/b. Then, by the
second constraint of (2.1), x∗

e ≥ 1/b for all edges e on path P . Thus, path P is
included in H in step 3 of Spanner Generation.

Now consider a central edge (u, v) in G. Let Wu,v be the set of vertices lying
on (not necessarily simple) paths of length at most k from u to v. Let W be the
collection of sets Wu,v for all central edges (u, v) in G. Recall that a hitting set for a
collection of sets is a set that intersects with all sets in the collection.

Claim 2.5. With probability at least 1 − 1/n, set Z chosen in step 4 of Spanner
Generation is a hitting set for W.

Proof. Fix a central edge (u, v), and let s = |Wu,v|. The number of u − v paths
of length at most k that can be formed from s vertices is at most sk−1. So, sk−1 ≥
(n logn)1−1/k, and therefore, s ≥ (n logn)1/k. The probability that Z ∩Wu,v = ∅ is
at most

(1 − s/n)r ≤ e−rs/n = e−3 ln 2 log n = 1/n3.

By a union bound, with probability at least 1 − 1/n, all central edges (u, v) in G
satisfy Z ∩Wu,v �= ∅.

If Z is a hitting set for W , then for each central edge (u, v), let z(u, v) be an
arbitrary element in Z ∩Wu,v. Then the path from u to v via z(u, v) along the edges
of BFS(z(u, v)) is of length at most k. Indeed, since z(u, v) ∈ Wu,v, there is a path P
of length at most k from u to v which contains z(u, v). The path from u to v along the
edges of BFS(z(u, v)) cannot be longer than P . Therefore, H is a directed k-spanner
of G whenever the event in Claim 2.5 occurs.

Lemma 2.6. Let OPT be the size of an optimal directed k-spanner of G. The
number of edges in H is

O((n log n)1−1/kOPT ).

Proof. Let OPT ′ be the optimum of the LP relaxation of (2.1) used in the Spanner
Generation algorithm. Clearly, OPT ′ ≤ OPT , since the LP is a relaxation. In step 3
of Spanner Generation, at most b · OPT ′ ≤ b · OPT edges are added to H . In step 5,
O(rn) = O(b · n) edges are added to H . So, |H | = O(b · (OPT + n)). Recall that we
assumed without loss of generality that G is weakly connected. With this assumption,
OPT ≥ n− 1. Therefore, |H | = O((n log n)1−1/kOPT ).

Lemmas 2.4 and 2.6 show that Spanner Generation is a randomizedO((n log n)1−1/k)-
approximation algorithm for Directed k-Spanner. The algorithm runs in polyno-
mial time, as the linear program is of polynomial size in the number of variables and
constraints.

Derandomization. Spanner Generation can be derandomized by greedily choos-
ing vertices in step 4, instead of sampling them at random. First, for each central
edge (u, v) in G, construct the set Wu,v of all vertices lying on (not necessarily simple)
paths of length at most k from u to v. This can be done by computing BFS(w) for
each vertex w in G, and checking if the path from u to v via w along the edges of
BFS(w) has length at most k.

The hitting set Z for collection W can be constructed deterministically using a
standard claim, given as Lemma 2.7. The number of sets in W is equal to the number
of central edges, which is O(n2). As we argued in the proof of Claim 2.5, each set in
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W contains at least (n logn)1/k vertices. Therefore, the resulting hitting set Z has
size

O

(
n logn2

(n logn)1/k

)
= O

(
(n logn)1−1/k

)
= O(b),

the same as in the randomized algorithm.
Lemma 2.7. Given a collection of m sets, each containing at least s elements,

coming from a universe of size n, one can efficiently construct a hitting set Z of size
O((n logm)/s).

Proof. Pick elements in Z greedily, and after selecting each element, delete sets
in which this element appears from the collection. Namely, always pick an element
that appears in the largest number of the remaining sets.

Since each set contains at least s elements, by averaging, there is an element
which occurs in at least an s

n fraction of the remaining sets. Hence, after t steps, we

delete at least a (1− s/n)
t ≤ e−st/n fraction of the sets. Setting t to the smallest

integer exceeding n lnm
s makes this fraction less than 1

m . Then all sets are deleted
after t steps, ensuring that all sets in the original collection intersect Z.

This completes the proof of Theorem 2.1.

Extension to variants of DIRECTED k-SPANNER. Our algorithm can also
be extended to solve variants of Directed k-Spanner. In the k-Diameter Span-

ning Subgraph, given a directed graph G, one has to find a sparse subgraph of G
(not TC(G)) such that all pairs of vertices (u, v) for which v is reachable from u are
connected by a path of length at most k. In the All-Client Directed k-Spanner
problem, for a given directed graph G and for a given subset of edges called the
server edges, one has to find a subgraph of G consisting of only server edges that is a
k-spanner of G. Finally, in the Client/Server Directed k-Spanner problem, one
has both a set of client edges and a set of server edges, and the goal is to construct a
subgraph consisting of server edges that spans each client edge with stretch at most k.

Theorem 2.8. For all constant k > 2, there are deterministic O((n log n)1−1/k)-
approximation algorithms for k-TC-Spanner, k-Diameter Spanning Subgraph,
and All-Client Directed k-Spanner.

Proof. As we discussed, k-TC-Spanner can be solved by running an algorithm
for Directed k-Spanner on the transitive closure of the input graph.

For the k-Diameter Spanning Subgraph problem, we consider central pairs of
comparable vertices rather than just edges, defined as in Definition 2.2. The rest of
the algorithm remains unchanged.

For the All-Client Directed k-Spanner problem, we modify our algorithm
by changing the definition of a central edge (Definition 2.2): we call an edge (u, v)
of G central if it is a client edge and there are more than b (not necessarily simple)
paths of server edges from u to v in G containing at most k edges. (Remaining client
edges are called noncentral.) We introduce variables xe only for server edges e in G
and consider BFS arborescences with respect to the graph of the server edges. Notice
that the size of an optimal solution for this problem is still at least n. The rest of the
algorithm and the analysis remains unchanged.

The above approach does not directly lead to an algorithm for theClient/Server

Directed k-Spanner problem, essentially because we no longer have OPT ≥ n−1 if
the number of client edges is small, and hence, we cannot add arborescences to handle
central edges as this might be too costly. Below, we modify our algorithm, using some
ideas from [40], to solve the Client/Server Directed k-Spanner problem.
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Theorem 2.9. For all constant k > 2 and for all fixed ε > 0, there is a random-
ized polynomial time O(n1−1/(2k−1)+ε)-approximation algorithm for Client/Server

Directed k-Spanner.
Proof. Given an input digraph G = (V,E) on n vertices, we can assume without

loss of generality that we know τ such that OPT ≤ τ < 2 ·OPT . This is so, because
we can repeat the entire argument below for every value of τ ∈ {1, 2, 4, . . . , 2�log2 n2�}
and stop at the smallest value of τ for which we obtain the desired spanner. This
incurs only a logarithmic loss in the time complexity, which can be ignored.

Definition 2.10. A server path is a path in G that consists entirely of server
edges.

Let b = n1−1/(2k−1). We change the definition of central edges (Definition 2.2)
as follows: a client edge (u, v) is central if there are more than b server paths from
u to v of length at most min(k, τ/b). For a central edge (u, v), let Wu,v be the set
of vertices lying on server paths of length at most min(k, τ/b) from u to v, and let
W be the collection of sets Wu,v for all central edges (u, v). Since the total number
of server paths of length at most min(k, τ/b) from u to v is at most |Wu,v|k−1, we
have |Wu,v|k−1 ≥ b or, equivalently, |Wu,v| ≥ b1/(k−1). Now, the same argument as in
Claim 2.5 shows that a set Z of (3n lnn)/b1/(k−1) random vertices from V is a hitting
set for W with probability at least 1 − 1/n, since for any fixed client edge (u, v), the
probability that Z ∩Wu,v = ∅ is at most

(1− |Wu,v|/n)3n lnn/b1/(k−1) ≤ e−(3 lnn)|Wu,v |/b1/(k−1) ≤ 1/n3.

For each randomly sampled vertex z ∈ Z and each vertex v in G incident to a client
edge, add the edges of a shortest server path from z to v if it is of length at most
min(k, τ/b), and also, the edges of a shortest server path from v to z if it is of
length at most min(k, τ/b). The total number of edges added in this step is at most
(3n lnn)/b1/(k−1) · n · τ/b = Õ(b) · τ = Õ(b) ·OPT , using the fact that the number of
vertices incident to client edges is at most n. Let H ′ be the set of edges added. With
probability at least 1 − 1/n, for every central edge (u, v), H ′ contains a path from u
to v of length at most k.

Let F be the set of noncentral client edges of G. We now need to find server paths
of length at most k spanning each edge in F . For a set of edges H ′′, let density(H ′′)
denote the ratio of |H ′′| to the number of edges in F for which H ′′ contains a server
path of length at most k. (Note that the density can be a number greater than 1.)
We show below how to find H ′′ such that density(H ′′) is at most O(bnε) · OPT/|F |.
If such H ′′ can be found, we can continue in a greedy fashion by removing from F
the set of edges for which there are already server paths of length at most k in H ′′

and repeating the procedure. A well-known covering argument then shows that this
greedy procedure eventually results in a set H of edges that contains a server path of
length at most k from u to v for every noncentral client edge (u, v), and the size of
H is O(bnε logn) · OPT . The union of H and H ′ then forms the resulting spanner,
proving the theorem. (The logn factor in the approximation ratio can be removed by
making ε slightly larger.)

Now, we describe how to find H ′′. For the purposes of analysis, fix an optimal
solution O with OPT ∈ [τ, 2τ) edges, and let L be the set of client edges (u, v) for
which every server path of length at most k from u to v in O is of length more than
τ/b. Note that L may be empty (for instance, if k < τ/b). There are two cases:
(i) |L| < |F |/2, and (ii) |L| ≥ |F |/2.
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Case (i) |L| < |F |/2. In this case, |F − L| ≥ |F |/2. This means that for at
least |F |/2 edges (u, v) ∈ F , there exists a server path from u to v of length at most
min(k, τ/b). In this case, we use an LP relaxation similar to that in the proof of
Theorem 2.1. For an edge (u, v) ∈ F , let Pu,v denote the set of server paths from u
to v of length at most min(k, τ/b). For each server edge e in G, we have a variable
xe indicating whether e occurs in the spanner. For each edge (u, v) ∈ F , we have a
variable f(u,v) indicating whether there is a server path of length at most min(k, τ/b)
from u to v. Finally, for each server path P ∈ Pu,v for any (u, v) ∈ F , there is a
variable yP indicating whether all the edges of P occur in the spanner. Now, consider
the following IP:

minimize
∑

server edge e

xe

subject to
∑

P∈Pu,v
yP ≥ f(u,v) ∀(u, v) ∈ F

yP ≤ xe ∀P ∈ ⋃(u,v)∈F P(u,v) and ∀e ∈ P∑
(u,v)∈F f(u,v) ≥ |F |/2

xe, yP , f(u,v) ∈ {0, 1} ∀e ∀P ∀(u, v) ∈ F .

It is clear that O satisfies this IP. Also, |Pu,v| ≤ b since (u, v) is noncentral, and
so, the IP can be computed in polynomial time [37]. Now, we relax the IP to an LP by
relaxing the constraints xe, yP , f(u,v) ∈ {0, 1} to xe, yP , f(u,v) ∈ [0, 1]. Let x∗, y∗, f∗

be a solution to this LP. We now make a simple observation (analogous to Lemma
3.6 in [40]).

Claim 2.11. |{(u, v) ∈ F | f∗
(u,v) ≥ 1/4}| ≥ |F |/3.

Proof. Suppose not. Then

∑
(u,v)∈F

f∗
(u,v) <

|F |
3

· 1 + 2|F |
3

· 1
4
=

|F |
2

,

which would violate the third LP constraint.
Thus, by the first LP constraint, for at least |F |/3 edges (u, v) ∈ F , we have∑

P∈Pu,v
y∗P ≥ 1/4. So, for every such edge (u, v), since (u, v) is noncentral, by

averaging, there exists a server path P ∈ Pu,v such that y∗P ≥ 1/(4b). By the second
LP constraint, x∗

e ≥ 1/(4b) for every server edge e on any such path P . Hence, if we
include in H ′′ any server edge e with x∗

e ≥ 1
4b ,

density(H ′′) ≤ (4bτ)/(|F |/3) = 12bτ/|F |.

Case (ii) |L| ≥ |F |/2. In this case, for at least |F |/2 client edges (u, v), every
server path in O from u to v is of length more than τ/b. For each (u, v) ∈ F , let Pu,v

be a path of length at most k in O from u to v. So,
∑

(u,v)∈F |Pu,v| ≥ τ |F |/(2b). Since
the total number of server edges in O is less than 2τ , it must be the case that some
edge e occurs in at least |F |/(4b) such paths Pu,v, since otherwise,

∑
(u,v)∈F |Pu,v| <

2τ · |F |/(4b) = τ |F |/(2b). This leads to the following claim.
Claim 2.12. An edge set in a directed graph is called a junction tree if it is the

union of an in-arborescence and an out-arborescence (not necessarily edge disjoint),
both rooted at the same vertex. When |L| ≥ |F |/2, there exists a junction tree H ′′

such that density(H ′′) ≤ 8bτ/|F |.
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Proof. As argued above, there must exist an edge e such that for |F |/(4b) distinct
pairs (u, v) ∈ F , there is a server path from u to v of length at most k which contains e.
Let r be one of the endpoints of e. Now, note that without loss of generality, the
|F |/(4b) server paths can be assumed to form a junction tree H ′′ rooted at r. If two
outgoing paths from r intersect at a vertex v, only one of the paths from r to v can
be included in H ′′ without changing the number of pairs (u, v) ∈ F for which H ′′

contains a server path of length at most k. The same argument holds for incoming
paths. Hence, H ′′ is a junction tree of density at most 2τ/(|F |/(4b)) = 8bτ/|F |.

At this stage, we can use the following result of [23].
Lemma 2.13 (Lemma 3.3 in [23]). For any fixed ε > 0, there is a polynomial-

time algorithm that, given a graph G = (V,E) on n vertices, constructs a junction
tree J ⊆ E satisfying density(J) = O(nε) ·density(J∗), where J∗ is a minimum density
junction tree for G.

If |L| ≥ |F |/2, Claim 2.12 shows that there is a junction tree of density O(bτ/|F |).
So, the algorithm from Lemma 2.13 is guaranteed to produce a junction tree of density
O(nεbτ/|F |).

Therefore, no matter which case holds, we can find an edge set of density

O(nεbτ/|F |) = O(bnε) ·OPT/|F |
by running the algorithms for both cases and letting H ′′ be the edge set which has
the smaller density. As argued before, this proves the theorem.

2.2. Algorithm for k-TC-SPANNER for large k. For large k, we present a
better approximation algorithm, which is specific to the k-TC-Spanner problem.

Theorem 2.14. For any k, there exists a deterministic polynomial time algorithm
for k-TC-Spanner with approximation ratio

O

(
n logn

k2 + k log n

)
.

Proof. Let G be the input digraph. Assume without loss of generality that G is
weakly connected. Then Sk(G) ≥ n − 1, and to prove the theorem it is enough to
construct a k-TC-spanner H of G of size

(2.2) |TR(G)|+O

(
n2 logn

k2 + k logn

)
.

Since all graphs with the same transitive closure give rise to the same k-TC-Spanner

problem, we can assume without loss of generality that G is transitively reduced.
Let k1 =

⌊
k
2

⌋
and k2 = k − k1 − 1. To construct H , we first select a subset Z of

vertices, which we call leaders, such that every two comparable vertices at distance k1
in G are connected by a shortest path via a leader. For each leader z ∈ Z, we select
a subset Vz of vertices reachable from z, which we call followers. Our k-TC-spanner
H contains all edges in G and shortcut edges connecting each leader to its followers.
The followers of z are selected in such a way that for every vertex v reachable from z,
there is a follower z′ of z that connects to v via a path of length at most k2 in G.

To see that the resulting H is a k-TC-spanner, consider a vertex pair (u, v) in G
with u �G v. If u is connected to v via a path of length at most k in G, then the
same holds in H . Otherwise, consider an arbitrary path (u = v0, v1, . . . , v = v�) in G,
as shown in Figure 2.1. By definition of the leader set Z, there is a leader z on a
shortest path from u = v0 to vk1 . That is, the distance from u to z is at most k1,
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k1 

. . .  

. . .  

. . .  

u=v1 

leader follower 

v2 

v v=vl 

z’ z 

≤ k1 ≤ k2 

Fig. 2.1. A path of length at most k = k1 + k2 + 1 between u and v in the proof of Theorem 2.14.

and u � z � vk1 � v. Since v is reachable from z, there is a follower z′ of z that
connects to v via a path of length at most k2. Since H contains an edge from z to its
follower z′, it must contain a path of length at most k1 + 1 + k2 = k from u to v via
(z, z′).

It remains to show how to construct sufficiently small sets of leaders and followers.
First, we construct the set Z of leaders. Consider a pair of comparable vertices (u, v)
at distance k1 in G. Fix a shortest path from u to v, and let Wu,v be the set of vertices
on that path. Let W be the collection of sets Wu,v for all comparable u, v at distance
k1 in G. We construct Z to be the hitting set of W , using Lemma 2.7. Then indeed
some shortest path from u to v contains a vertex in Z for all u, v at distance k1 in G.
The number of leaders is |Z| = O(n logn

k ) because each Wu,v contains k1 + 1 = Ω(k)
vertices, the universe size, i.e., the total number of vertices, is n and the number of
sets in W is at most the number of vertex pairs, that is, O(n2). Observe that the size
of Z cannot exceed n. Therefore,

|Z| = O

(
min

(
n,

n logn

k

))
= O

⎛
⎝ n · n logn

k

max
(
n, n logn

k

)
⎞
⎠

= O

(
n log n

k

1 + logn
k

)
= O

(
n logn

k + logn

)
.

To construct the set Vz of followers of vertex z, first compute the out-arborescence
BFSout(z) described in Definition 2.3. For each i ∈ {0, 1, . . . , k2 − 1}, let V i

z denote
the set of vertices at distance i (mod k2) from z. Since the number of vertices in
BFSout(z) is at most n, one of the sets V i

z has at most n/k2 vertices. We let Vz be
the smallest set V i

z . By construction, for every vertex v reachable from z, there is a
vertex z′ ∈ Vz that connects to v via a path of length at most k2 in G.

Since |Vz | ≤ n
k2

for all z, the size of the constructed k-TC-spanner is

|G|+O

(
n2 logn

k2 + k logn

)
.

Since G is transitively reduced, this is equal to the expression in (2.2).

3. Hardness results for k-TC-SPANNER. This section presents our hardness
results for k-TC-Spanner. In section 3.1, we prove Ω(log n) hardness of approxima-
tion for 2-TC-Spanner. Section 3.2 describes our main technical contribution, the
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hardness result for constant k ≥ 3. In section 3.3, we give a general NP-hardness
result for large k, for which our hardness of approximation results do not apply.

We start by describing why previous inaproximability results for the Directed

k-Spanner problem do not imply similar inaproximability results for the k-TC-

Spanner problem. Since k-TC-Spanner is a special case of Directed k-Spanner,
which is Θ(logn)-inapproximable for k = 2 and 2log

1−ε n-inapproximable for k ≥ 3, it
is natural to ask whether the hard instances ofDirected k-Spanner from [50, 33, 36]
can be used to prove hardness for k-TC-Spanner. It turns out that all these instances
have very small k-TC-spanners. We demonstrate it for the instance from [50] used in
the proof of Ω(logn)-hardness forDirected k-Spanner, which works via a reduction
from Set Cover.

Let G be a bipartite digraph for Set Cover with n vertices (“sets”) on the left,
n vertices (“elements”) on the right, and edges from left to right. Let I be a set of i
new independent vertices, for some value i, and let L be a directed line on k− 1 new
vertices. Call the first vertex of L the head, and the last vertex the tail. Include
directed edges (1) from the tail of L to every set in G, (2) from every vertex of I to
the head of L, and (3) from every vertex of I to the sets and the elements of G. Call
the constructed digraph G′.

Observe that in G′, all directed edges except those from I to G must be included
in the directed k-spanner, as such edges form the unique path between their endpoints.
At this point, the only pairs of vertices at distance larger than k are those from a
vertex in I to an element of G. Since these vertices are adjacent in G′, there must
be a path of length at most k in the spanner. The only possible path is from the
vertex in I to a vertex of G. It is easy to see that adding exactly OPT edges from
each vertex in I to the sets of G is necessary and sufficient to obtain a spanner, where
OPT is the size of the minimum set cover. By making i sufficiently large, the size of
the spanner is easily seen to be Θ(i·OPT ), and thus one can approximate Set Cover

by approximating Directed k-Spanner, so the problem is Ω(logn)-inapproximable.
However, there is a trivial k-TC-spanner for this instance! Indeed, by transitivity

we can simply connect the head of L to each of the elements of G. This is a k-TC-
spanner of size proportional to the number of vertices in G′. Thus, the best one could
hope for with this instance is to show Ω(1)-hardness for k-TC-Spanner. For similar

reasons, the instance showing 2log
1−ε n-inapproximability for Directed k-Spanner

also cannot establish anything beyond Ω(1)-hardness for k-TC-Spanner.
In the example above there are many paths to cover (those from I to elements

of G), but a few “shortcut” edges cover them all. Ideally, we would have many paths
to cover, and each shortcut edge could only cover a single path. Hesse’s digraph
requiring a large number of shortcuts to reduce its diameter [47] satisfies the desired
condition. His idea was to associate vertices with a subset V of vectors in R

d such
that (u, v) ∈ E iff u−v is an extreme point of the d-dimensional ball of integer points.
By the properties of an extreme point, a shortcut can cover at most one path from a
large family of shortest paths.

However, to achieve an inapproximability result, we need better structured graphs.
We use generalized butterflies defined in [74] as the main building blocks of our re-
ductions.

Definition 3.1 (generalized butterfly graphs). A generalized butterfly of di-
ameter k and width n is a digraph whose vertices are identified with coordinates
[n1/k]k × [k + 1], and whose edges are between vertices u = (u1, . . . , uk, i) and v =
(v1, . . . , vk, i+1) iff for all j �= i, uj = vj. We say a vertex (u1, . . . , uk, i) is in strip i.
Therefore, vertices in strips i ∈ [k] have out-degrees equal to n1/k, and vertices in
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. . .

. . . 

strip 1 strip i strip i+1 strip k+1

(u1,…,ui,…,uk,i) 

(v1,…,vi,…,vk,i+1) 

Fig. 3.1. A generalized butterfly.

strips j ∈ {2, . . . , k+1} have in-degrees equal to n1/k. (See Figure 3.1 for an illustra-
tion.)

It is easy to see that there is a unique shortest path of length k from any u in
strip 1 to any v in strip k+1. Moreover, as we rigorously argue later, any shortcut is
on at most n1−2/k such paths because if it connects a vertex in strip i with a vertex in
strip i+ � (where � ≥ 2), it fixes all but i−1 coordinates of u and all but k+1− (i+ �)
coordinates of v. Thus, at least n1+2/k shortcuts are needed to reduce the diameter
to k − 1.

3.1. Ω(logn)-hardness of 2-TC-SPANNER. The goal of this section is to
prove the following theorem.

Theorem 3.2. For all k, such that 2 ≤ k = o( lgn
lg lgn ), it is NP-hard to approx-

imate the size of the sparsest k-TC-spanner of a given digraph G within a ratio of
O( 1k logn). In particular, 2-TC-Spanner is Ω(logn)-inapproximable.

Our proof uses a reduction from a variant of Set Cover, called (a, b, c)-Nice Set

Cover. Before defining this problem, we define other variants of Set Cover. An
instance of (a, b)-Set Cover, consists of a bipartite graph G = A ∪B, with |A| = a
and |B| = b. An instance of a-Balanced Set Cover consists of a bipartite graph
G = A ∪ B, with |A| = |B| = a. An instance of (a, c)-Balanced Bounded Set

Cover consists of a bipartite graph G = A ∪ B, with |A| = |B| = a and such that
the degrees of the vertices in A are at most c. Finally, an instance of (a, b, c)-Nice

Set Cover consists of a bipartite graph G = A ∪ B, with |A| = a, |B| = b. B can
be partitioned into disjoint sets Bi such that B = ∪a

i=1Bi, |Bi| = b
a , assuming b

a is
an integer. G must satisfy the property that if v ∈ A is adjacent to w ∈ Bi, for some
1 ≤ i ≤ a, then v is adjacent to every element of Bi. Moreover, v is adjacent to at
most c sets Bi. A solution to all these Set Cover variants is a minimum number of
vertices in A that cover all the vertices in B.

Lemma 3.3. It is NP-hard to approximate a solution to (na, nb, nc)-Nice Set

Cover to within a ratio of γc · logn for some constant γ, where 0 < c ≤ a ≤ b.
Proof. We will need the following fact, proved in [62]. Earlier, this result was

shown under the weaker assumption that NP �⊆ DTIME(nO(log logn)) [39, 54].
Fact 3.4. There is a constant d > 0 for which it is NP-hard to approximate a

solution to (nd, n)-Set Cover to within a ratio of γ logn, for some γ > 0.
Claim 3.5. It is NP-hard to approximate a solution to n-Balanced Set Cover

to within a ratio of γ logn, for the same γ as above.
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Proof. By Fact 3.4, (nd, n)-Set Cover is not approximable within a factor of
γ log n, unless P = NP. Using a reduction from (nd, n)-Set Cover, if |A| = nd < n,
transform this instance into an instance where |A| = |B| by padding A with dummy
vertices. If |A| > n, transform this instance into an instance where |A| = |B| by
padding the set B with dummy vertices and connecting them to all vertices in A.

Claim 3.5 allows us to now prove hardness of Balanced Bounded Set Cover.
Claim 3.6. It is NP-hard to approximate a solution to (na, nc)-Balanced

Bounded Set Cover to within a ratio of γc · logn, where γ is from Claim 3.4
above.

Proof. The proof is similar to that of Lemma 2.3 of [50]. Take an instance I
of nc-Balanced Set Cover, which is NP-hard to approximate within a factor of
γc logn by Claim 3.5. Replicate this instance na−c times to create an instance I ′ of
(na, nc)-Balanced Bounded Set Cover. Clearly, the solution to I ′ must consist
of na−c copies of the solution to the underlying I. Hence, I ′ is also inapproximable
to within a ratio of γc logn.

To complete the proof of the lemma, notice that a set M is a solution to an
instance of (na, nb, nc)-Nice Set Cover iffM is a solution to the instance of (na, nc)-
Balanced Bounded Set Cover, resulted from compressing each set Bi into a
single vertex bi, 1 ≤ i ≤ na. By Claim 3.6 above, it follows that (na, nb, nc)-Nice

Set Cover is not approximable within a ratio of γc logn, unless P = NP.
We now prove the main theorem of this section.
Proof of Theorem 3.2. Let α = 1 + 3

2k and β = 1
5k . Given G1 = Vk+1 ∪ Vk+2,

an instance of (n, nα, nβ)-Nice Set Cover, transform it into the following (k + 2)-
partite graph G = V1 ∪ V2 ∪ · · · ∪ Vk+1 ∪ Vk+2, with edges directed from Vi to Vi+1.
Let |Vi| = n, 1 ≤ i ≤ k + 1, and recall that by definition Vk+2 = nα. The induced
subgraph on V1∪V2∪ . . . Vk+1 is the butterfly graph of diameter k and width n. Then
|G| ≤ kn1+ 1

k + nα+β = O(n1+ 17
10k ) edges, because k = o( lgn

lg lgn ). Notice that there are

indeed at most nα+β edges from Vk+1 to Vk+2 since there are n vertices in Vk+1, each
of degree at most nβ+α−1.

Let OPTS denote the size of the minimal k-TC-spanner for G, and let OPTNSC

denote the size of the solution to the Nice Set Cover instance G1.
Lemma 3.7. OPTS = Θ(OPTNSC n

2
k ).

Proof. First, we show that there is a k-TC-spanner H of G such that |H | =
Θ(OPTNSC n

2
k ) edges. Then we show that any k-TC-spanner of G must have

Ω(OPTNSC n
2
k ) edges.

Notice that the only pairs of vertices of G that are not already at distance at most
k are the comparable vertices u, v, with u ∈ V1 and v ∈ Vk+2. In order to connect
such pairs by a directed path of length at most k, we need “shortcut” edges between
different levels Vi and Vj , i+ 2 ≤ j. Without loss of generality, we may assume that
the only shortcut edges used are those connecting vertices in Vi to Vi+2, for some i’s.
Indeed, a shortcut edge connecting a vertex u ∈ Vi to a vertex v ∈ Vj , where j > i+2
can be replaced with one edge connecting u ∈ Vi to a vertex w ∈ Vi+2 that is an
ancestor of v. In this way, all paths from V1 to Vk+2 that previously had a path of
length at most k still have a path of length at most k. Define an edge e = (u, v) to
be a type i edge if u ∈ Vi and v ∈ Vi+2. We will say that a vertex u reaches an edge
e = (v, w) if there is a path from u to v. We next build a k-TC-spanner of G with

Θ(OPTNSC n
2
k ) edges. Let H be the smallest k-TC-spanner of G which uses only

shortcut edges of type k − 1.
Claim 3.8. |H | = Θ(n

2
k OPTNSC).
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Proof. Let O be a set of vertices in Vk+1 that is an optimal solution to the
(n, nα, nβ)-Nice Set Cover instance. Connect each vertex v ∈ O to the set Av of
all the n2/k ancestors of v from level Vk−1. Direct these edges from Av to v. Notice
that we added OPTNSC n

2
k edges, and the new graph H ′ is a k-TC-spanner. Indeed,

each vertex u ∈ V1 is comparable to each vertex v ∈ O, and thus, there is a vertex
w ∈ Av that is comparable to u. This implies that for every u ∈ V1, there is a path
of length k − 1 to each of the vertices of O, resulting in a path of length k to each
vertex in Vk+2.

To show that H (the minimum size k-TC-spanner with shortcuts only of type

k − 1) needs at least OPTNSC n
2
k edges on top of those in G, assume otherwise.

For v ∈ Vk−1, let n(v) be the number of type k − 1 edges leaving from v. By

assumption,
∑

v∈Vk−1
n(v) < OPTNSC n

2
k . Each vertex in v ∈ Vk−1 has exactly

a(v) = n1− 2
k ancestors in V1. For u ∈ V1, let e(u) be the total number of type

k − 1 shortcuts leaving from its descendants in Vk−1. Since there exists a path of
length k from u to each vertex in Vk+2, it follows that e(u) ≥ OPTNCS . Notice that∑

v∈Vk−1
n(v)a(v) =

∑
u∈V1

e(u) ≥ OPTNCS n. This implies that
∑

v∈Vk−1
n(v) ≥

OPTNCS n
2
k , a contradiction to our assumption. We conclude that |H | = |G| +

OPTNSC n
2
k . Next we show that |H | = Θ(n

2
k OPTNSC). Indeed, OPTNSC is, by

construction, the same as the size of the optimal solution to an (n, nβ)-Balanced

Bounded Set Cover instance, where we must cover n vertices on the right with
n vertices of degree at most nβ on the left. This implies that OPTNSC ≥ n1−β =
n1− 1

5k . Now, |G| = Θ (n1+ 17
10k ) and |H | = |G| + OPTNSC n

2
k . Since OPTNSCn

2
k ≥

n
2
k+1− 1

5k = n1+ 18
10k , this implies that |H | = Θ(OPTNSC n

2
k ).

Let M be a sparsest spanner of G which possibly uses shortcut edges of types
other than k − 1. Assume for the sake of contradiction that |M | < 1

4 n
2
k OPTNSC .

A vertex u ∈ V1 can reach v ∈ Vk+2 in at most k steps by using shortcut edges either
of type i ≤ k − 1 or of type k. We will show that, under our assumption, there are
many vertices in V1 that can reach at most 1

2 OPTNSC vertices in Vk+1 by using edges
only of some types i < k. Moreover, there are many vertices in V1 that reach only
n

1
kOPTNSC edges of type k. That will be enough to argue that a contradiction must

occur, allowing us to conclude that |M | = Θ(n
2
k OPTNSC).

Claim 3.9. Let R be the set of vertices in V1 that can reach less than 1
2 OPTNSC

vertices v ∈ Vk+1 in at most k − 1 steps in M . Then |R| > n
2 .

Proof. For each vertex u ∈ V1 and v ∈ Vk+1, define an indicator variable Xu,v

which is 1 iff there is a shortcut edge along the unique path from u to v in G. Consider
a type i shortcut edge e = (vi, vi+2), with vi ∈ Vi and vi+2 ∈ Vi+2. Then there are

n
i−1
k vertices u in V1 such that there is a path from u to v1. Moreover, there are

n
k−i−1

k vertices v ∈ Vk+1 such that there is a path from vi+2 to v. Thus, this shortcut

edge e can set at most n
i−1
k + k−i−1

k = n1− 2
k different Xu,v to 1. By assumption,

there are less than 1
4 n

2
kOPTNSC shortcut edges of types i, where i ≤ k − 1. It

follows that less than 1
4 n OPTNSC different Xu,v’s can be set to 1. For u ∈ V1, let

n(u) be the number of vertices v ∈ Vk+1 that u can reach in less than k steps. Thus,
Eu∈V1 [n(u)] < 1

4 OPTNSC . By Markov’s inequality, Pru∈V1 [n(u) ≥ 1
2 OPTNSC ] <

1
2 .

This implies that more than 1
2 of the vertices u ∈ V1 can reach less than n

2 OPTNSC

vertices v ∈ Vk+1 in less than k steps. Therefore, |R| > n
2 .

For u ∈ V1, let t(u) be the number of type k edges that u reaches in M .

Claim 3.10. Let S be the set of vertices u ∈ V1 such that t(u) < 1
2 n

1
k OPTNSC .

Then |S| > n
2 .
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Proof. Assuming |M | < 1
4 n

2
k OPTNSC , there are at most 1

4 n
2
k OPTNSC edges

of type k. Each v ∈ Vk has exactly n1− 1
k ancestors in V1, and therefore

∑
u∈V1

t(u) <

n1− 1
k

1
4 n

2
k OPTNSC = 1

4n
1+ 1

kOPTNSC . Thus, Eu∈V1 [ t(u)] <
1
4n

1
kOPTNSC and by

Markov’s inequality, Pru∈V1 [t(u) <
1
2n

1
kOPTNTS ] >

1
2 .

Let T = R∩S. The two claims above imply |T | ≥ 1. Now we argue that a vertex
v ∈ T cannot reach some vertices in Vk+2. Recall that an instance of (n, nα, nβ)-
Nice Set Cover is associated with an underlying instance of (n, nβ)- Balanced

Bounded Set Cover, by compressing each set Bi on the right into a single vertex.
As we already observed in the proof of Lemma 3.3, a set of elements on the left is
a solution to the Nice Set Cover problem iff it is also a solution to the associ-
ated Balanced Bounded Set Cover problem. Suppose we remove 1

2 n
1
kOPTNSC

vertices from Vk+2. This corresponds to removing at most 1
2n

1
k+1−αOPTNSC =

1
2 n− 1

2kOPTNSC = o(1) OPTNSC vertices from the universe of the related (n, nβ)-
Balanced Bounded Set Cover instance. Let OPTBSC be the size of a solution
to this new Set Cover problem. Then OPTBSC ≥ (1− o(1)) OPTNSC .

Suppose then that v ∈ T could cover all of the elements in Vk+2. Each such vertex
v ∈ T can cover vertices in Vk+2 in exactly two ways: (1) from the 1

2OPTNSC vertices
it reaches in Vk+1 via paths of length < k using type i < k edges, and (2) by at most
1
2n

1
kOPTNSC type k edges it can reach. Thus, OPTBSC ≤ 1

2 OPTNSC , which is a
contradiction since OPTBSC ≥ (1− o(1)) OPTNSC . Thus, v ∈ T cannot reach all of

Vk+2, and so the optimal k-TC-spanner on G must have size at least n
2
kOPTNSC/4.

We can them conclude that |M | = Θ(n
2
k OPTNSC).

Suppose now that we could approximate the size of the sparsest k-TC-spanner
within γ1 logn for some γ1 > 0. Then, since |M | = Θ(n

2
kOPTNSC), we could

approximate a solution to (n, nα, nβ)-Nice Set Cover within γ2 logn, for some
γ2 > 0. By Lemma 3.3, (n, nα, nβ)-Nice Set Cover cannot be approximated within
γβ logn = O(1/k) logn, unless P = NP. Therefore, the size of the sparsest k-TC-
spanner cannot be approximated within a factor (γ3 logn)/k, for some γ3 > 0, unless
P = NP.

3.2. 2log1−ε n-hardness for constant k ≥ 3. The following is the formal state-
ment of our inapproximability result for k ≥ 3.

Theorem 3.11. For all fixed ε ∈ (0, 1) and constant k ≥ 3, the size of the

sparsest k-TC-spanner cannot be approximated to within a factor of 2log
1−ε n unless

NP ⊆ DTIME(npolylogn).

Reduction from Min-Rep. To get 2log
1−ε n-inapproximability, we reduce from the

Min-Rep problem, defined next.
Definition 3.12 (the Min-Rep problem). An (n, r, d,m)-Min-Rep instance is

a bipartite graph satisfying the following properties:
1. It has maximum degree d.
2. The left part can be partitioned into sets A1, . . . ,Ar and the right part into

sets B1, . . . ,Br, so that |Ai| = |Bi| = n/r for all i ∈ [r] (see Figure 3.2).
3. To describe the last parameter m, call a vertex isolated if its degree is 0, and

nonisolated otherwise. Let m(Ai) be the inverse of the fraction of nonisolated
vertices in Ai. Then m is the minimum such m(Ai).

The supergraph of this graph is defined as the graph with (super)nodes A1, . . . ,Ar,
B1, . . . ,Br, and (super)edges (Ai,Bj) present iff there is a node in Ai adjacent to a
node in Bj.
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A1

A3

B1

B2

B3

A2

supergraph

Fig. 3.2. A Min-Rep instance and the corresponding supergraph.

d
d d

Generalized bu�erfly Broom

Fig. 3.3. Graphs used in the reduction from Min-Rep to k-TC-Spanner.

A rep-cover is a vertex set S in the graph such that whenever (Ai,Bj) is an edge
in the supergraph, there is an edge between some u, v ∈ S with u ∈ Ai and v ∈ Bj.

A solution to Min-Rep is a smallest rep-cover, and its size is denoted by OPT.
Our proof relies on the following results of [50].
Fact 3.13 (hardness of approximating Min-Rep [50]). For all ε ∈ (0, 1), there

is no polynomial time algorithm for the Min-Rep problem with approximation ratio
2log

1−ε n unless NP ⊆ DTIME(npolylogn).
A first attempt. As a first attempt, we construct a graph G of diameter k + 2 as

follows. We attach a disjoint copy of a generalized butterfly of diameter k− 1 to each
Ai in the Min-Rep instance graph; that is, we identify the vertices in Ai with the
last strip of the butterfly. We call the vertices in the butterfly at distance x from Ai

the xth shadow of Ai. Next, for each Bj , we attach what we call a broom. This is
a 3-layer graph, where the two leftmost layers form a bipartite clique, and the right
layer consists of degree-1 nodes, called broomsticks, attached to nodes in the middle
layer. Each node in the middle layer has the same number of broomsticks attached
to it. See Figure 3.3. Each Bj is identified with the left layer of a disjoint broom. All
edges of G are directed from the shadows of the Ai towards the broomsticks (left to
right). See Figure 3.4.

We would like to argue that the sparsest k-TC-spanner H of G is formed as
follows. Let S be a minimum rep-cover of the underlying Min-Rep instance. For
each s ∈ S, if s is in an Ai, include all shortcuts from the 2-shadow of Ai to s which
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A1 

A3 

B1 

B2 

B3 

A2 

MIN-REP Brooms 
3 layers 

Bu�erflies 
k layers 

Fig. 3.4. Reduction from Min-Rep.

are in the transitive closure of G. Otherwise (s is in a Bj), include all shortcuts
from s to the broomsticks of Bj. By balancing the number of broomsticks with the
size of 2-shadows, one can show that H has size |S|f(n, k), where f(n, k) is an easily
computable function. Since S is a rep-cover, H is a k-TC-spanner. If H were optimal,
then approximating its size within some factor would approximate Min-Rep within
the same factor. It turns out that H is not optimal, and so our first attempt does not
work.

Improving the first attempt. Below, we modify G and consider a related k-TC-
spanner H of the modified G. We show that any k-TC-spanner has size Ω(|H |/ logn)
for constant k. Since Min-Rep is 2log

1−ε n-inapproximable, this still gives 2log
1−ε n-

hardness.
To prove this, we need to argue that most vertices v in the k-shadows do not

“benefit” from traversing other shortcuts to reach the broomsticks. This requires a
classification of all alternative routes from such v to broomsticks. Since v is in a
generalized butterfly, these routes are well-understood. However, for a generic Min-

Rep instance, most of these routes do indeed lead to a much smaller k-TC-spanner.
To rule out the alternative routes, we ensure that the optimal solution and the

four parameters of the Min-Rep instance each lie in a narrow range. In Theorem 3.14,
we prove that Min-Rep with the required parameter restrictions is inapproximable by
giving a reduction from an unrestricted Min-Rep instance. It works by carefully ap-
plying the following five operations on a “base” Min-Rep instance with unrestricted
parameters: (1) disjoint copies, (2) dummy vertices inside clusters, (3) blowup inside
clusters with matching supergraph, (4) blowup inside clusters with complete super-
graph, and (5) tensoring. Each operation increases one or several parameters by a
prespecified factor, and together they give us five degrees of freedom to control the
range of OPT and the four parameters of Min-Rep. (See Theorem 3.14.)
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In analyzing our lower bound on the size of a k-TC-spanner for the graph G the
isolated vertices play a central role, as they help control the number of pairs from
the first and last layers of G that use alternative paths (as defined above). More
precisely, computing the number of pairs from these layers that use specific shortcuts
amounts to computing products of the out-degrees of vertices in various layers of the
graph. We will ensure that the butterflies are connected to the Min-Rep instance in
such a way that the 1-shadow vertices are connected to a large fraction of isolated
neighbors, this essentially eliminating many potential paths. This feature allows us
argue that the number of pairs that use alternative paths is small compared to OPT
and can thus be ignored (see Lemma 3.18 for a precise statement). An equivalent way
of achieving this feature would have been to decrease the out-degrees of the vertices
in the 1-shadows. For the sake of elegance of presentation, however, we preferred to
rather use full butterfly graphs combined with isolated vertices.

Recap of the overall strategy. We give a final overview of the overall strategy
and then proceed to prove the individual steps. First, we show a variant of Min-

Rep, which we call noise-resilient Min-Rep, is NP-hard. This gives us careful control
over the parameters r, d, and m. We further specialize the instance of noise-resilient
Min-Rep to what we call specialized Min-Rep, which further divides the clusters in
noise-resilientMin-Rep into identical groups. This will help bound the overall number
of paths connecting comparable vertices of certain types. Next, we show how to build
an instance of the k-TC-spanner problem from specialized Min-Rep, which involves
attaching generalized butterflies to the left set of vertices of the specialized Min-

Rep instance, attaching broom graphs to the right set of vertices of the specialized
Min-Rep instance, and directing all edges from left to right.

At this point we have a directed graph G. We can easily show that there exists a
k-TC-spanner of G of a certain size related to the optimum of the specializedMin-Rep

instance; this is done in our rep-cover spanner lemma. The harder part is in Lemma
3.17, where we show that this k-TC-spanner is almost optimal in its number of edges.
To do so we classify all paths between comparable vertices depending on the types
of shortcut edges that their near-shortest paths contain. We first remove superedges
in the specialized Min-Rep instance which have many comparable vertices that have
paths that go through them and use shortcut edges of a type that we do not want.
We show by our choice of parameters in the specialized Min-Rep instance that this
results in only removing o(OPT ) superedges; see our path analysis lemma (here we
use the isolated vertices in the third case analysis to bound the number of comparable
vertices which use shortcut edges of a certain type). Next, after removing this small
number of superedges, we show how to take a k-TC-spanner for the resulting graph
and make it 1-good, with a logarithmic blowup in the number of edges. This means
that now comparable vertices that pass through all superedges use the same type of
shortcut edges; see our rerandomization lemma. Finally, given the new special form
of the k-TC-spanner, we are able to directly relate its size to the size of the optimal
cover of our specialized Min-Rep instance; see our rep-cover extraction lemma. This
will complete the proof.

We now proceed with the formal proof.
Theorem 3.14 (noise-resilient Min-Rep is hard). Fix parameters κ ∈ (0, 1)

and R,D,M,F ∈ (0, 1 − κ) satisfying F ∈ (R, 2R) and D + M + F < 1. Noise-
resilient Min-Rep is a family of (n, r, d,m)-Min-Rep instances with r ∈ [nR, nR+κ],

d ∈ [nD, nD+κ], m ∈ [nM , nM+κ], and OPT ∈ [nF , nF+κ]. This problem is 2log
1−ε n-

inapproximable for all ε ∈ (0, 1) unless NP ⊆ DTIME(npolylogn).
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Proof. We give a reduction from Min-Rep with unrestricted parameters, whose
hardness is stated in Fact 3.13.

We reduce an arbitrary Min-Rep instance on nκ′
vertices to a Min-Rep instance

on n vertices with parameters in the desired range (where κ′ is a suitably small

constant). Since Min-Rep with unrestricted parameters is 2log
1−ε n-inapproximable

and the reduction is polynomial time, the theorem follows. The reduction consists of
a sequence of five transformations on the original instance. We describe each of the
transformations and specify how the parameters of the input and output Min-Rep

instances are related.
1. (disjoint copies)

Given an (n0, r0, d0,m0)-Min-Rep instance G0 with OPT0 as the solution
value, T1(G0, n

δ1) is defined to be the Min-Rep instance G1 with nδ1 disjoint
copies of G0. G1 is a (n1, r1, d1,m1)-Min-Rep instance with n1 = nδ1n0,
r1 = nδ1r0, d1 = d0, and m1 = m0. The solution value of G1 is OPT1 =
nδ1OPT0 because if OPT1 < nδ1OPT0, one could, by averaging over the nδ1

copies of G0, extract a Min-Rep cover for G0 of size smaller than OPT .
2. (dummy vertices inside clusters)

Given an (n1, r1, d1,m1)-Min-Rep instance G1 with OPT1 as the solution
value, T2(G1, n

δ2) is defined to be the Min-Rep instance G2 obtained by
increasing the size of each cluster by a factor of nδ2 and not attaching any
edges to the new vertices. G2 is a (n2, r2, d2,m2)-Min-Rep instance with
n2 = nδ2n1, r2 = r1, d2 = d1, and m2 = nδ2m1. The solution value of G2

remains OPT2 = OPT1 because the minimum cover of G2 does not include
any isolated vertices.

3. (blowup inside clusters with matching supergraph)
Given an (n2, r2, d2,m2)-Min-Rep instance G2 with OPT2 as the solution
value, T3(G2, n

δ3) is defined to be the Min-Rep instance G3 obtained as
follows. For each clusterAi inG2, construct a superclusterA′

i inG3 consisting
of nδ3 copies of Ai. Let (A′

i)k denote the kth copy of Ai inside A′
i. Obtain

(B′
i)k similarly. Whenever there is an edge in G2 between u ∈ Ai and v ∈ Bj ,

for each 1 ≤ k ≤ nδ3 , add an edge between the copy of u in (A′
i)k and the

copy of v in (B′
j)k. This procedure yields a (n3, r3, d3,m3)-Min-Rep instance

G3 where n3 = nδ3n2, r3 = r2, d3 = d2, and m3 = m2. The solution value of
G3 remains OPT3 = OPT2, because given a rep-cover for G3, if we fix some
k ∈ [nδ3 ] and replace each vertex in the rep-cover with the corresponding
vertex in the kth copy of the cluster inside the supercluster it belongs to,
then the size of the rep-cover set becomes no larger and now it covers the
underlying G2 instance as well.

4. (blowup inside clusters with complete supergraph)
Given an (n3, r3, d3,m3)-Min-Rep instance G3 with OPT3 as the solution
value, T4(G3, n

δ4) is defined to be the Min-Rep instance G4 obtained as
follows. For each cluster Ai in G3, construct a cluster A′

i in G4 consisting of
nδ4 copies of Ai. Let (A′

i)k denote the kth copy of Ai inside A′
i. Whenever

there is an edge in G3 between u ∈ Ai and v ∈ Bj, for each 1 ≤ k1, k2 ≤ nδ4 ,
add an edge between the copy of u in (A′

i)k1 and the copy of v in (B′
j)k2 . This

procedure yields a (n4, r4, d4,m4)-Min-Rep instance G4 where n4 = nδ4n3,
r4 = r3, d4 = nδ4d3, and m4 = m3. The solution value of G4 remains
OPT4 = OPT3, because any rep-cover for G4 is easily seen to correspond to
a rep-cover for the underlying G3 and vice versa.
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A1 

A2 

B1 

B2 

u 

v 

(A’1)1 

(A’2)1 

(A’1)2 

(A’’1)1 

(A’’1)2 

(A’2)2 

(A’’2)1 

(A’’2)2 

(B’1)1 

(B’1)2 

(B’’1)1 

(B’’1)2 

(B’2)1 

(B’2)2 

(B’’2)1 

(B’’2)2 

A’1 

A’’1 

A’2 

A’’2 

B’1 

B’’1 

B’2 

B’’2 

Fig. 3.5. The basic step in the tensoring operation.

5. (tensoring)
Given an (n4, r4, d4,m4)-Min-Rep instance G4 with OPT4 as the solution
value, T5(G4, n

δ5) is defined to be the Min-Rep instance G5 obtained by
repeating the following construction log2 n

δ5 times.3 For each cluster Ai in
G4, construct two clusters A′

i and A′′
i in G5. Furthermore, A′

i contains two
copies of Ai and A′′

i contains two copies of Ai. Denote the two copies inside
A′

i as (A′
i)1 and (A′

i)2 and similarly the two copies inside A′′
i as (A′′

i )1 and
(A′′

i )2. Similarly for each cluster Bj. Now, for each edge (u, v) in G4 with
u ∈ Ai and v ∈ Bj, add the following four edges in G5: between the copy of
u in (A′

i)1 and copy of v in (B′
j)1, between the copy of u in (A′

i)2 and copy
of v in (B′′

j )2, between the copy of u in (A′′
i )1 and copy of v in (B′′

j )1, and
between the copy of u in (A′′

i )2 and copy of v in (B′
j)2. See Figure 3.5.

The procedure yields a (n5, r5, d5,m5)-Min-Rep instance G5 where n5 =
n2δ5n4, r5 = nδ5r4, d5 = d4, and m5 = m4. Also, we argue that OPT5 =
n2δ5OPT4. Clearly, OPT5 ≤ n2δ5OPT4 because one could choose copies of
the vertices in the cover for G4 in each of the nδ5 copies of the clusters of G4.
For the other direction, notice that G5 contains n2δ5 vertex disjoint copies of
G4, and so, if OPT5 < n2δ5OPT4, then by averaging, there would be a copy
of G4 covered using less than OPT vertices, a contradiction.

For some positive κ′ sufficiently smaller than κ, we consider an arbitrary
(nκ′

, r0, d0,m0)-Min-Rep instance G0 with optimum OPT0, where the only con-
straints on the parameters are nontriviality conditions: r0 ∈ [1, nκ′

], d0 ∈ [1, nκ′
],

m0 ∈ [1, nκ′
], and OPT0 ∈ [1, 2nκ′

]. Let G = T5(T4(T3(T2(T1(G0, n
δ1), nδ2), nδ3),

nδ4), nδ5). We choose δ1, δ2, δ3, δ4, δ5 such that G is a (n, r, d,m)-Min-Rep instance

3For simplicity, we assume nδ5 is a power of 2.
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1408 BHATTACHARYYA ET AL.

with r ∈ [nR, nR+κ′
], d ∈ [nD, nD+κ′

], m ∈ [nM , nM+κ′
], and OPT ∈ [nF , nF+κ′

]. By

definitions of the transformations, n = nκ′+δ1+δ2+δ3+δ4+2δ5 , r ∈ [nδ1+δ5 , nκ′+δ1+δ5 ],
d ∈ [nδ4 , nδ4+κ′

], m ∈ [nδ2 , nκ′+δ2 ], and OPT ∈ [nδ1+2δ5 , nκ′+δ1+2δ5 ]. Therefore,
choose δ4 = D, δ2 = M , δ5 = F − R, and δ1 = 2R − F . All of these values
are in (0, 1) by restriction of the parameters in the theorem statement. Now, since
κ′+δ1+δ2+δ3+δ4+2δ5 = D+M+F+δ3+κ′ and since D+M+F < 1 and κ′ can be
made as small as we want, we can choose δ3 ∈ (0, 1) such that n = nκ′+δ1+δ2+δ3+δ4+2δ5 .
Therefore, G is a Min-Rep instance with parameters in the desired range.

The variant of Min-Rep in Theorem 3.14 is called “noise-resilient” because even
if many vertices in the sets Ai and Bj are adversarially deleted in an instance of this
problem, the minimum rep-cover does not shrink significantly (this will become more
clear as the proof proceeds). This property helps us rule out many alternative routes
in the TC-spanner, though we will need to change our graph G. Our reduction from
noise-resilient Min-Rep to k-TC-Spanner for k > 2 consists of two steps: first we
produce a specialized Min-Rep instance I from an arbitrary instance I0 of noise-
resilient Min-Rep, and then we construct a k-TC-Spanner instance G by carefully
adjoining generalized butterflies on the left and broom graphs on the right of I.

From noise-resilient Min-Rep to specialized Min-Rep. We will construct the
specialized Min-Rep instance I in two steps. First, we instantiate Theorem 3.14
with a set of very carefully selected parameters in order to obtain an instance I0,
and then we apply transformation T4 from the proof of Theorem 3.14 to I0. This
will result in a specialized Min-Rep instance I that is as hard to approximate as the
initial Min-Rep instance.

Toward the first step, set δ = k−1
k− 1

4

, η = δ
2(4k−4)(4k−2) , and ζ = δ(4k−5

4k−4 + 1
4k−2 ).

Let κ be a sufficiently small positive constant which will be chosen in the course
of the proof. We start from an (n0, r0, d0,m0)-instance I0 of noise-resilient Min-

Rep with optimum OPT0, where n0 = nδ, r0 ∈ [nδ/2, nδ/2+κ], d0 ∈ [nη, nη+κ], m0 ∈
[n2η, n2η+κ], and OPT0 ∈ [nζ , nζ+κ]. By instantiating Theorem 3.14 with R = 1

2 , D =
η
δ ,M = 2η

δ , F = ζ
δ , and κ, we obtain that the (n0, r0, d0,m0)-Min-Rep problem

is 2log
1−ε n-inapproximable unless NP ⊆ DTIME(npolylogn). The conditions on the

parameters in Theorem 3.14 are satisfied since ζ ∈ ( δ2 , δ) and η + 2η + ζ < δ.
We transform I0 to a specialized (n, r, d,m)-Min-Rep instance I by applying on

I0 the transformation T4. More precisely, set I = T4(I0, n1−δ). By definition of T4,
graph I has n vertices, r = r0, d = d0n

1−δ, and m = m0. The transformation results
in a bipartite graph I with nodes partitioned into clusters A1, . . . ,Ar on the left, and
B1, . . . ,Br on the right. We summarize the structural details of I next:

1. Each Ai and Bj is a union of n1−δ groups Ai,s and Bj,s, respectively, with
s ∈ [n1−δ].

2. Each group Ai,s and Bj,s, for i, j ∈ [r], s ∈ [n1−δ], is a copy of A0
i and,

respectively, B0
j , from the original instance I0. Thus |Ai,s| = |Bj,s| = nδ

r .

3. For each edge (u, v) with u ∈ A0
i and v ∈ B0

j of I0, graph I has edges between

the copy of u in Ai,k1 and the copy of v in Bj,k2 for all k1, k2 ∈ [n1−δ].
4. The solution value of I remains OPT0 because the supergraph corresponding

to I0 and I are identical.
This completes the description of the specialized Min-Rep instance I.
An immediate consequence of our construction above is the following result.
Corollary 3.15. The specialized (n, r, d,m)-Min-Rep problem defined above is

2log
1−ε n-inapproximable unless NP ⊆ DTIME(npolylogn).
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TRANSITIVE-CLOSURE SPANNERS 1409

From specialized Min-Rep to the underlying k-TC-Spanner instance. As pre-
viously mentioned, to obtain our final k-TC-Spanner instance we will analyze the
graph obtained by attaching generalized butterflies to the left of the specialized Min-

Rep instance I, and broom graphs to the right of I.
More exactly, from I, we construct a graph G of diameter k + 2 as follows. First

recall that, by Definition 3.1, a generalized butterfly of diameter k − 1 and width

n′ is a digraph whose vertices are identified with coordinates [(n′)
1

k−1 ]k−1 × [k], and
whose edges are between vertices u = (u1, . . . , uk−1, i) and v = (v1, . . . , vk−1, i + 1)
iff for all j �= i, uj = vj . A vertex (u1, . . . , uk, i) is in strip i. We first attach a

disjoint generalized butterfly of diameter k − 1 and width n′ = nδ

r = |Ai,s|, denoted
BF (Ai,s), to each group Ai,s in I for all i ∈ [r], s ∈ [n1−δ]. That is, we identify
vertices in Ai,s with the last strip of BF (Ai,s) in the way discussed below. Denote
by BF (Ai) = ∪sBF (Ai,s) the set of all the vertices attached in this manner to the
cluster Ai. Let BF j(Ai,s) be the vertices in strip j of the butterfly BF (Ai,s), where
BF k(Ai,s) = Ai,s, and let BF j(Ai) = ∪sBF j(Ai,s). Recall that the vertices in the
butterfly BF (Ai,s) at distance x from Ai,s form the xth shadow of Ai,s. Call the

in-degree as well as out-degree of the vertices in the butterflies d∗
def
= (n

δ

r )
1

k−1 .
Next, for each Bi,s, we attach a broom, denoted BR(Bi,s) (as defined right after

the statement of Fact 3.13.) More specifically, each vertex in Bi,s is connected to
the vertices of a set BRk+2(Bi,s) of size d∗, and each vertex v ∈ BRk+2(Bi,s) is
connected to a disjoint set of nodes, called broomsticks, of size d∗. Let BRk+3(Bi,s)
be the set of broomsticks adjacent to BRk+2(Bi,s). Let BRk+2(Bi) = ∪sBRk+2(Bi,s)
and BRk+3(Bi) = ∪sBRk+3(Bi,s).

Identify layer Vj with ∪i,sBF j(Ai,s) for j ∈ [k], layer Vk+1 with ∪i,sBi,s, and
layer Vj with ∪iBRj(Bi) for j ∈ {k + 2, k + 3}. Direct all the edges from Vi to Vi+1.

Details on attaching butterflies. We further discuss the way the butterflies are
attached to the groups. Recall that we identify vertices in Ai,s with the last strip
BF k(Ai,s) of a disjoint butterfly for all i ∈ [r], s ∈ [n1−δ]. Also, recall that I0 is
a (n0, r, d0,m)-Min-Rep instance with n0 = nδ, r ∈ [nδ/2, nδ/2+κ], d0 ∈ [nη, nη+κ],

and m ∈ [n2η, n2η+κ]. Thus, for each group Ai,s there are at most nδ

rm nonisolated
vertices. We will attach the butterfly BF (Ai,s) in such a way that each vertex in
BF k−1(Ai,s) is adjacent to at most d∗

m nonisolated vertices in Ai,s, out of a total
out-degree of size d∗. This is the crucial property exploited later in the proof. We
can achieve this property in the following way. Recall that each vertex of BF j(Ai,s)
is labeled (a1, . . . , ak−1, j), where al ∈ [d∗] for all l ∈ [k − 1], j ∈ [k], and each
vertex v′ = (a1, . . . , ak−2, a

′
k−1, k − 1) connects to v = (a1, . . . , ak−2, ak−1, k). Thus,

for a fixed prefix b = (b1, b2, . . . , bk−2) all vertices (b1, . . . , bk−2, bk−1, k − 1) connect
to the same set Ab of vertices in Ai,s, and |Ab| = d∗ (for comparison, recall that

|Ai,s| = d∗k−1). Choose the set Ab to contain at most d∗/m nonisolated vertices,
which is possible since the total fraction of nonisolated vertices in Ai,s is ≤ 1

m .
A sparse TC-spanner H for the k-TC Spanner instance G. We first introduce

a bit of notation. A k-TC-spanner for G = V1 ∪ V2 ∪ · · · ∪ Vk+3 is built by adding
shortcut edges (u, v) between comparable u and v, where u ∈ Vi, v ∈ Vi+�, and � ≥ 2.
For given �, i, we classify such a shortcut edge as type �&i. Since G has diameter
k+2, a k-TC-spanner of G remains a k-TC-spanner when a type �&i edge (u, v) with
� ≥ 4 is replaced by a type 3&i edge (u, v′), where v′ is a predecessor of v. Therefore,
it is enough to consider k-TC-spanners with shortcut edges only of types 2&i for
1 ≤ i ≤ k + 1 and 3&i for 1 ≤ i ≤ k. The k-TC-spanner constructed in Lemma 3.16
will contain only edges of type 2&(k− 2) and 2&(k+1). Finally, we will say that the
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1410 BHATTACHARYYA ET AL.

vertex sets X and Y are comparable if there exist vertices u ∈ X and v ∈ Y that are
comparable.

Lemma 3.16 (rep-cover spanner lemma). There exists a k-TC-spanner H for G,
with |H| = O(OPT n1−δ(n

δ

r )
2

k−1 ).
Proof. We construct the graph H by adding some shortcut edges to G. Let S0

be a minimum rep-cover of I0 of size OPT. Recall that each Ai and Bj is replicated
n1−δ times in I. Let S be the set of all replicas in I of vertices in S0. Let Ai,j

and Bk,l be two groups containing comparable pairs of vertices. Recall that d∗ =

(n
δ

r )
1

k−1 . To get a k-TC-spanner on BF (Ai,j) ∪ BR(Bk,l) connect each vertex v
from the restriction of S to Ai,j with all its d2∗ comparable vertices in BF k−2(Ai,j).
Similarly, connect each vertex in the restriction of S to Bk,l to its d2∗ comparable
vertices in BRk+3(Bk,l). Since every vertex u ∈ BF 1(Ai,j) is comparable to every
vertex v ∈ Ai,j , it follows that there is a vertex w ∈ BF k−2(Ai,j) comparable to
both u and v. Thus, between any such u and v there is a path using an edge of type
2&(k − 2). Similarly, every vertex in BRk+3(Bk,l) is comparable to every vertex of
Bk,l. By our construction, any pair of vertices (u1, uk+3) ∈ BF 1(Ai,j)×BRk+3(Bk,l)
is connected by a path that uses edges of types 2&(k− 2) and 2&(k+1). In addition,
any pair of vertices (u1, uk+2) ∈ BF 1(Ai,j) × BRk+2(Bk,l), as well as (u2, uk+3) ∈
BF 2(Ai,j)×BRk+3(Bk,l) are connected by a path of length at most k using shortcut
edges of types 2&(k−2) and 2&(k+1), respectively. By connecting all the comparable
groups Ai,j and Bk,l in this manner, we obtain a k-TC-spanner on G.

Since there are n1−δ copies of each Ai,j and Bk,l, the total number of shortcut

edges added is OPTn1−δd2∗ = OPT n1−δ(n
δ

r )
2

k−1 , and we used shortcut edges only of
types 2&(k − 2) and 2&(k + 1). In addition, since G is transitively reduced, H must
include all the edges of G. We bound the size of G by inspecting the total number of
edges in the butterflies (knd∗), the Min-Rep instance (≤ nd), and the brooms (nd∗+
n1−δrd2∗). Thus, |G| ≤ k r n1−δ (n

δ

r )1+
1

k−1 + n2+η+κ−δ + n (n
δ

r )
1

k−1 + n1−δ r (n
δ

r )
2

k−1 .
The following conditions, satisfied by the parameters of our construction, suffice to
show that each term of the preceding sum is, respectively, o(|H|). (The parameter κ
is omitted from the conditions, since if the inequalities are satisfied without κ, then
κ can be made sufficiently small to ensure that they are satisfied with κ.)

ζ + (1− δ) +
2

k − 1

(
δ − δ

2

)
>

δ

2
+ (1− δ) +

k

k − 1

(
δ − δ

2

)
or ζ > δ

2k − 3

2(k − 1)

(3.1)

ζ + (1− δ) +
2

k − 1

(
δ − δ

2

)
> 2 + η − δ or ζ > 1 + η − δ

k − 1

(3.2)

ζ + (1− δ) +
2

k − 1

(
δ − δ

2

)
> 1 +

1

k − 1

(
δ − δ

2

)
or ζ > δ

2k − 3

2(k − 1)

(3.3)

ζ + (1− δ) +
2

k − 1

(
δ − δ

2

)
> (1− δ) +

δ

2
+

(
δ − δ

2

)
2

k − 1
or ζ >

δ

2

(3.4)

Path analysis and rerandomization. The next lemma shows that the k-TC-spanner
H defined above and analyzed in Lemma 3.16 is nearly optimal.
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Lemma 3.17. Any k-TC-spanner K of G has

|K| = Ω

(
OPTn1−δ

(
nδ

r

) 2
k−1

/ logn

)
.

Proof. Given a k-TC-spanner K of G with o(
n1−δd2

∗
logn )OPT edges, we show that we

can construct a Min-Rep cover for I of size o(OPT ), which is a contradiction (recall

that d∗ = (n
δ

r )
1

k−1 ). We will accomplish this by a series of transformations which
modify K into a k-TC-spanner that uses shortcut edges only of the type 2&(k−2) and
2&(k + 1). The process increases the size of the k-TC-spanner only by a logarithmic
factor. Finally, we show that from the modified k-TC-spanner, one can extract a
Min-Rep cover of size o(OPT ) for I, the desired contradiction.

We call a superedge (Ai,Bj), where i, j ∈ [r], deletable with respect to K if at least
1/4 of the vertex pairs (u, v) ∈ BF 1(Ai) ×BRk+3(Bj) have a path between them in
K of length at most k, and which does not contain edges both of type 2&(k− 2) and
2&(k+1). Our first step is to show that such cluster pairs can be essentially ignored.

Lemma 3.18 (path analysis lemma). The number of deletable superedges with
respect to K is o(OPT ).

Proof. We call a path canonical if it contains shortcut edges of types both 2&(k−2)
and 2&(k + 1); otherwise, a path is alternative. Observe that any alternative path
contains at least one shortcut edge from among the following three cases: (1) shortcut
edges crossing both Vk and Vk+1, i.e., one of the shortcut edge types: 3&(k − 2),
3&(k−1), 2&(k−1), 2&k, and 3&k; (2) shortcut edges of type 3&�, where � ≤ k−3; (3)
shortcut edges of type 2&�, where � ≤ k−3. Let SB be the set of all the shortcut edge
types contained in the above three cases. Then |SB| = Θ(k). Now, for each shortcut
edge type S ∈ SB, let Del(S) = {(i, j) ∈ [r]2| at least 1

4|SB | fraction of pairs (u, v) ∈
BF 1(Ai)×BRk+3(Bj) have an alternative path containing a shortcut edge of type S}.
By a union bound, the total number of deletable superedges is at most

∑
S∈SB

Del(S).
Hence, it suffices to show that for all S ∈ SB, Del(S) = o(OPT ).

Let C(S) = {(u, v) ∈ ∪(i,j)∈[r]2(BF 1(Ai) × BRk+3(Bj)) | ∃ an alternative path
between u and v containing a shortcut edge of type S}. By the definition of Del(S),
since for all i ∈ [r], |BF 1(Ai)| = n

r and |BRk+3(Bi)| = n1−δd2∗, we have

(3.5) |C(S)| ≥ |Del(S)| 1

4|SB|
n

r
n1−δ d2∗.

Now we will obtain upper bounds of |C(S)| in terms of OPT for each of three
cases of shortcut edges, thus obtaining upper bounds on Del(S). Recall that δ =
k−1
k− 1

4

, η = δ
2(4k−4)(4k−2) , and ζ = δ(4k−5

4k−4 + 1
4k−2 ). Also, recall r ∈ [n

δ
2 , n

δ
2+κ], d ∈

[n(1−δ)+η, n(1−δ)+η+κ], and m ∈ [n2η, n2η+κ] for some small enough constant κ and

d∗ = (n
δ

r )1/(k−1). We mostly ignore κ below since we can make it as small a constant
as we like.

Suppose that S is a shortcut edge type from the first case. Then S is a shortcut of
type �1&(k−�2), where 2 ≤ �1 ≤ 3, 0 ≤ �2, and �1−�2 ≥ 1. Now we obtain that for any
shortcut of type S, the shortcut can be used for at most dk−1−�2∗ d3+�2−�1∗ = dk+2−�1∗
pairs (u, v) ∈ C(S). Hence, |C(S)| ≤ dk+2−�1∗ ·OPT

n1−δd2
∗

logn ≤ dk∗ ·OPT
n1−δ d2

∗
logn . From

(3.5), we obtain that
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1412 BHATTACHARYYA ET AL.

|Del(S)| ≤ 4|SB|d
k
∗OPT n1−δ d2∗
n
r n1−δ d2∗ logn

= O

(
d∗

n1−δ logn

)
OPT.

Then because δ < k−1
k− 1

2

, it follows that 1 − δ > δ
2(k−1) , and so we obtain that n1−δ

is a polynomial factor larger than d∗ = (n
δ

r )1/(k−1), which proves that |Del(S)| =
o(OPT ).

Now suppose that S is a shortcut type of the second case. Let S be type 3&�,
where 1 ≤ � ≤ k − 3. Now, from the fact that out-degree of each vertex in Vk is
at most n1−δ+η+κ, we obtain that for any shortcut of type S, the shortcut can be
used for at most d�−1

∗ dk−3−�
∗ n(1−δ)+ηd2∗ = dk−4

∗ n(1−δ)+ηd2∗ many pairs (u, v) ∈ C(S)
(ignoring κ as mentioned above). Hence, up to small polynomial factors,

(3.6) |C(S)| ≤ dk−4
∗ n(1−δ)+ηd2∗ · OPT

n1−δd2∗
logn

=
dk∗n2−2δ+η

logn
OPT.

From (3.5) and (3.6), we obtain |Del(S)| ≤ 4|SB| nη

d∗ lognOPT . Now, η < δ
2(k−1) , and

so, |Del(S)| = o(OPT ).
Now suppose that S is a shortcut type of the third case. Let S be type 2&�, where

� ≤ k − 3. Note that for any vertex v in Vk−1, the number of nonisolated vertices
in Vk that v is connected to is d∗

m . Hence, together with the fact that the out-degree
of each vertex in Vk is at most n1−δ+η+κ, we obtain that for any shortcut of type S,

the shortcut can be used for at most
dk−3
∗
n2η n(1−δ)+ηd2∗ many pairs (u, v) in C(S) (up

to small polynomial factors). Then

(3.7) |C(S)| ≤ dk−3∗
n2η

n(1−δ)+ηd2∗ · OPT
n1−δd2∗
logn

=
dk+1∗ n2−2δ+η

n2η logn
OPT.

From (3.5), (3.7), and the fact that nη = o(n2η logn), we get |Del(S)| ≤ 4|SB| nη

n2η logn

OPT = o(OPT ).
Let SB be the set of all shortcut edge types included in the three cases. We

analyze the three cases separately and show that for each S ∈ SB, the number of
superedges (Ai, Bj), (i, j) ∈ [r]2, such that at least a 1

4|SB| fraction of pairs (u, v) ∈
BF 1(Ai) × BRk+3(Bj) have an alternative path containing a shortcut of type S, is
o(OPT ). Then by a union bound over S ∈ SB, we prove the lemma. The analysis
of case (1) relies on the fact that the degree of each nonisolated vertex of Vk is at
least n1−δ ≥ d∗. For case (2), we need the facts that the out-degree of each vertex in
Vk is at most d0n

1−δ and that nη = o(d∗). For case (3), we use the facts that every
vertex v in Vk−1 is connected to is at most d∗

m nonisolated vertices in Vk, and that
nη = o(n2η).

Next, form the graph G′ from G by deleting all edges of G connecting Ai to Bj , for
all the deletable superedges (Ai,Bj) with respect to K. Similarly, obtain a graph K′

from K as follows: for all deletable superedges (Ai,Bj) with respect to K, delete all
edges of K connecting Ai to Bj, and also delete all shortcuts in K of types other than
2&(k − 2) and 2&(k + 1). Note that for any cluster pair (Ai,Bj) of G′, either there
are no edges between vertices in Ai and Bj or at least 3

4 of the pairs in BF 1(Ai) ×
BRk+3(Bj) are connected by a canonical path. Also define a Min-Rep instance I ′

from I by deleting all edges in I corresponding to all the deletable superedges with
respect to K.
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For μ ∈ [0, 1], we say a subgraph of TC(G) is a μ-good k-TC-spanner for G if for
every (i, j) ∈ [r]2 such thatAi and Bj are comparable in G, at least a μ fraction of pairs
(u, v) ∈ BF 1(Ai) × BRk+3(Bj) are connected by canonical paths in the subgraph.
For example, the graph K′ is a 3

4 -good k-TC-spanner for G.
Lemma 3.19 (rerandomization lemma). If a 3

4 -good k-TC-spanner K′ for G′ is
given, then there exists K′′, a 1-good k-TC-spanner for G′, such that |K′′| ≤ O(|K′| ·
logn).

Proof. First, we fix some notation. Consider some (i, j) ∈ [r]2 such that there is
an edge between a vertex in Ai and a vertex in Bj in G′. Let Si,j be the set of vertices
in Ai that are adjacent to Bj , and let Ti,j be the set of vertices in Bj that are adjacent
to Ai. We know that at least 3

4 of the vertices in BF 1(Ai) have a path that uses an
edge of type 2&(k − 2) to Si,j and at least 3

4 of the vertices in BRk+3(Bj) have a
path of length 1 from Ti,j . By a Markov argument, for at least 1

2 of the groups Ai,s

in Ai, at least
1
2 of the vertices in BF 1(Ai,s) must have a path that uses an edge of

type 2&(k− 2) to Si,j . Call the butterfly attached to such a group Ai,s an (i, j)-good
butterfly, and call the set of vertices in BF k−2(Ai,s) that have shortcut edges to Si,j

(i, j)-helpful vertices. Similarly, for at least 1
2 of the groups Bj,t, at least 1

2 of the
vertices in BRk+2(Bj,t) have shortcut edges from Ti,j. We call the brooms attached
to such groups Bj,t (i, j)-good brooms, and we call the vertices in BRk+2(Bj,t) that
have shortcut edges to Ti,j (i, j)-helpful vertices. It will be clear from context whether
a helpful vertex is to the left or to the right of the Min-Rep instance.

Our construction of K′′ ensures that in K′′, for any two comparable clusters
(Ai,Bj), each vertex in BF 1(Ai) is comparable to a helpful vertex in BF k−2(Ai),
and each vertex in BRk+3(Bj) is helpful. This is enough to ensure that K′′ is a

1-good k-TC-spanner for G′. We will construct K′′ to be equal to
⋃O(log n)

r=1 Πr(K′),
where each Πr is a random transformation of K′ that moves the shortcut edges.

Each Πr will be the composition of several transformations on the edges of K′.
The transformations move only shortcut edges, but not transitive reduction edges,
in K′. Informally, the first transformation randomly permutes the groups in each
cluster on the left side of the Min-Rep instance, the second randomly permutes the
groups in each cluster of the right side of the Min-Rep instance, the third randomly
permutes the edges of the butterfly graph, and the fourth randomly permutes the
broomsticks. Formally, we have the following:

• Left group permutations: Πlg .
For each i ∈ [r], independently choose a random permutation πi : [n

1−δ] →
[n1−δ]. For each cluster Ai, if (u, v) is an edge in K′ with u, v ∈ BF (Ai,s),
then there is an edge (u′, v′) in Πlg(K′), where u′ and v′ are the copies of u
and v, respectively, in BF (Ai,πi(s)).

• Right group permutations: Πrg.
For each j ∈ [r], independently choose a random permutation πj : [n1−δ] →
[n1−δ]. For each cluster Bj , if (u, v) is an edge in K′ with u, v ∈ BR(Bj,s′),
then there is an edge (u′, v′) in Πrg(K′), where u′ and v′ are the copies of u
and v, respectively, in BR(Bj,πj(s′)).

• Butterfly permutations: Πbf .
For each i ∈ [r] and s ∈ [n1−δ], label a vertex u inBF (Ai,s) as (a1, a2, . . . , ak−1,
m) ∈ [d∗]k−1 × [k], where u ∈ Vm and (a1, a2, . . . , ak−1) is the usual vertex
labelling that defines a generalized butterfly graph. Now, for every (i, s) and
every (a1, . . . , ak−3) ∈ [d∗]k−3, independently choose two random permuta-

tions π
(a1,...,ak−3)
i,s : [d∗] → [d∗] and σ

(a1,...,ak−3)
i,s : [d∗] → [d∗]. For any edge
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1414 BHATTACHARYYA ET AL.

(u,w) ∈ BF k−2(Ai,s)×BF k(Ai,s), where u = (a1, . . . , ak−3, ak−2, ak−1, k−2)
and w = (a1, . . . , ak−3, a

′
k−2, a

′
k−1, k), there exists the edge (u

′, w) in Πbf (K′)

where u′ = (a1, . . . , ak−3, π
(a1,...,ak−3)
i,s (ak−2), σ

(a1,...,ak−3)
i,s (ak−1), k − 2). All

other edges in the butterfly stay fixed.
• Broom permutations: Πbr.
For each j ∈ [r] and s′ ∈ [n1−δ], independently choose random permutations
πj,s′ : [d∗] → [d∗] and σj,s′ : [d∗] → [d∗]. Label a vertex v ∈ BRk+2(Bj,s′)
as an element of [d∗] and label a vertex w ∈ BRk+3(Bj,s′) as an element of
[d∗]× [d∗] in the natural way. If (u,w) ∈ BRk+1(Bj,s′)×BRk+3(Bj,s′ ) is an
edge in K′, then (u,w′) ∈ BRk+1(Bj,s′)×BRk+3(Bj,s′) is an edge in Πbr(K′),
where w′ = (πj,s′ (w1), σj,s′(w2)) if the label of w is (w1, w2). All other edges
in the broom stay fixed.

Now, for each r = 1, . . . , O(logn), define Πr to be the composition of Πlg, Πrg,
Πbf , and Πbr. For each r, choose all the permutations independently. As we said
before, we set K′′ = ∪rΠr(K′).

Claim 3.20. For each (i, j) ∈ [r]2 such that Ai and Bj are comparable, for any
u ∈ BF 1(Ai) and v ∈ BRk+3(Bj),

Pr
Πr

[u is in a (i, j)-good butterfly in Πr(K′)] ≥ 1

2
,

Pr
Πr

[v is in a (i, j)-good broom in Πr(K′)] ≥ 1

2
.

Proof. At least half the butterflies attached to Ai are good as discussed above,
and hence, for every vertex u ∈ BF 1(Ai), the left group permutations ensure that
with probability at least 1

2 , the edges of a good butterfly are mapped to the butterfly
that u belongs to. The right group permutations provide the same function for a
vertex v ∈ BRk+3(Bj).

Claim 3.21. Fix (i, j) ∈ [r]2 such that Ai and Bj are comparable. For every
vertex v ∈ BRk+3(Bj),

Pr
Πr

[v is an (i, j)-helpful vertex |v in (i, j)-good broom] ≥ 1

2
.

Proof. At least half of the broomsticks of a good broom are helpful (i.e., incident to
a shortcut edge), and hence for every vertex v ∈ BRk+3(Bj), the broom permutations
ensure that with probability at least 1/2, vertex v is incident to a shortcut edge.

Claim 3.22. For all (i, j) ∈ [r]2 such that Ai and Bj are comparable, and for all
u ∈ BR1(Ai),

Pr
Πr

[u is comparable to a (i, j)-helpful vertex |u is in a (i, j)-good butterfly] ≥ 1

2
.

Proof. Suppose BF (Ai,s) is a (i, j)-good butterfly. For any (ak−2, ak−1) ∈
[d∗]2, let S(ak−2,ak−1) be the set of vertices u in BF 1(Ai,s) such that u is labeled as

(a1, . . . , ak−3, ak−2, ak−1, 1), where (a1, . . . , ak−3) are arbitrary elements of [d∗]k−3.
Note that all the vertices in a given S(ak−2,ak−1) are comparable to the same set of

vertices in BF k−2(Ai,s) and hence, either they are all comparable to an (i, j)-helpful
vertex or none of them are. Hence, at least 1

2 of the S(ak−2,ak−1)’s must have every

vertex comparable to a helpful vertex in BF k−2(Ai,s). Now, because of the random

D
ow

nl
oa

de
d 

09
/2

6/
13

 to
 1

47
.4

6.
11

5.
20

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRANSITIVE-CLOSURE SPANNERS 1415

butterfly permutations, a given vertex v ∈ BF 1(Ai,s) falls in such a S(ak−2,ak−1) with

probability at least 1
2 .

Thus, for two vertices u and v in comparable Ai and Bj, respectively, the proba-
bility that u and v are connected by a canonical path in Πr(K′) is at least 1

16 . Since
we take O(log n) independent random transformations Πr, the probability that u and
v will be connected by a canonical path in at least one Πr(K′) is at least 1− 1

poly(n) .

Taking a union bound over all vertex pairs in Ai and Bj as well as all possible i
and j, we find that with probability at least 1

2 , K′′ has a canonical path between any
comparable u ∈ V1 and v ∈ Vk+3. Therefore, the desired K′′ exists and is of size
O(|K′| · logn).

Now that the k-TC-spanner is 1-good, it is easier to reason about rep-covers of
the underlying Min-Rep instance. We show below in Lemma 3.23 that there exists
a rep-cover for I of size o(OPT ). This is a contradiction, completing the proof of
Lemma 3.17.

Lemma 3.23 (rep-cover extraction lemma). Given K′′, a 1-good k-TC-spanner
for G′, of size o(OPT · n1−δ · d2∗), there exists a Min-Rep cover of I of size o(OPT ).

Proof. For s ∈ [n1−δ], define K′′
s to be the subgraph ofK′′ induced by ∪r

i=1

(
BF (Ai,s)

∪ BR(Bi,s)
)
. The K′′

s are clearly disjoint. By averaging, there exists an s̄ such that
|K′′̄

s | ≤ o(OPT · d2∗).
We further partition the shortcut edges in K′′

s̄ into d2∗ parts. For each x, y ∈ [d∗],
let Ux,y denote the set of all the nodes in ∪r

i=1BF 1(Ai,s̄) with butterfly coordinates
(u1, . . . , uk−2, x, y, 1), where u1, . . . , uk−2 ∈ [d∗]. To partition the corresponding
broomsticks, identify the nodes in BRk+2(Bi,s) with [d∗], and for each such node
x ∈ [d∗], identify its descendants in BRk+3(Bi,s) with (x, 1), . . . , (x, d∗). For each
x, y ∈ [d∗], let U ′

x,y denote the set of all the broomsticks ∪r
i=1BRk+3(Bi,s̄) with

coordinates (x, y). Define K′′
s̄,x,y to be the subgraph of K′′

s̄ induced by the nodes
comparable to the nodes in Ux,y ∪ U ′

x,y.
Observe that the shortcut edges in differentK′′

s̄,x,y are disjoint because (a) different
U ′
x,y are disjoint and (b) the descendants in Vk−2 of different Ux,y are also disjoint.

Thus, by averaging, there exist x̄, ȳ such that K′′
s̄,x̄,ȳ contains o(OPT ) shortcut edges.

Let S be the set of vertices in Vk and Vk+1 that are incident to shortcut edges in
K′′̄

s,x̄,ȳ. Then |S| ≤ o(OPT ). Observe that S is a rep-cover for the Min-Rep instance
I ′
s̄ obtained by restricting I ′ to the edges between Ai,s̄ and Bj,s̄. This holds because in

K′′
s̄ , each comparable pair of nodes in Ux̄,ȳ×U ′

x̄,ȳ is connected by a canonical path. But
a Min-Rep cover for I ′̄

s is also a a Min-Rep cover for I ′ by definition of I. Finally,
given a rep-cover S of I ′, we can get a rep-cover of I by adding at most two vertices
per superedge deleted from I to obtain I ′. Since o(OPT ) superedges were deleted
and since |S| ≤ o(OPT ), we obtain a Min-Rep cover for I of size o(OPT ).

3.3. NP-hardness of k-TC-SPANNER. Theorem 3.2 breaks down for large k,
specifically, k = Ω(lg n/ lg lg n). In this setting, we have the following.

Theorem 3.24. For all ε > 0 and all k < n1−ε, it is NP-hard to approximate
the size of the sparsest k-TC-spanner within a factor of 1+ γ, for some γ = Ω

(
1
k

)
.

Proof. We reduce from 3NodeCover. An instance of 3NodeCover consists
of a collection D of subsets of a universe X . Each subset contains at most three
elements, and each element of X is contained in at most two subsets. The goal is
to output a minimum size subcollection of D, such that the union of the sets in the
subcollection is X . We use the following result by Berman and Karpinski [15].

Theorem 3.25 (from [15]). 3NodeCover is NP-hard to approximate within a
factor of 1 + c, for some constant c > 0.
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Fig. 3.6. Reduction from 3NodeCover to k-TC-Spanner.

We now give a reduction from 3NodeCover to k-TC-Spanner. For a given
instance R of 3NodeCover, we construct the following graph G, depicted in Fig-
ure 3.6. Let V1 be the set of vertices representing each set d ∈ D. Let V2 be the set of
vertices representing each element t ∈ X . Draw a directed edge from each vertex in
V1 corresponding to d ∈ D to the vertices in V2 corresponding to elements of d. Add
an extra vertex a. For each vertex v ∈ V1, add k− 1 new vertices v1, v2, . . . , vk−1 and
connect them via a directed path of length k passing through a, v1, v2, . . . , vk−1, v in
the given order. Call this path P (v).

Let OPTS be the size of a sparsest k-TC-spanner of G, and let OPT3NC be the
size of the solution to the initial instance R = (D,X) of 3NodeCover. Let |D| = n.

Claim 3.26. OPTS = OPT3NC + kn+
∑

d∈D |d|.
Proof. All edges ofG need to be included in a TC-spanner becauseG is transitively

reduced. The number of edges in G is kn+
∑

d∈D |d|, where the first term accounts
for the edges on the n paths P (v), and the second, for the edges from V1 to V2.

Recall that shortcuts are edges from the transitive closure of G, added to G to
obtain a TC-spanner. We show that there is a sparsest spanner H of G that contains
only shortcuts from vertex a to some vertices in V1.

For v ∈ V1, suppose that H contains an edge (vi, t) for some vi ∈ P (v) and t ∈ V2.
We claim that such an edge (vi, t) can be replaced with an edge (a, u), where u ∈ V1

and u is adjacent to t. Indeed, all vertices on P (v), besides a, are already at distance
at most k from t in G. Thus, to reach t from a it is enough to include in H a shortcut
from a to any u ∈ V1 that is adjacent to t. Similarly, an edge e between vertices on
a path P (v) in H can be replaced by an edge (a, v). Indeed, such an edge e can only
be useful to connect a to some vertices in V2, via a path that passes through v.

Among the edges from a to V1, a sparsest k-TC-spanner need only contain the
edges that connect a to a minimum set of vertices in V1 that cover V2. Thus, there
are exactly OPT3NC such edges and, by the argument above, no other shortcuts are
needed.

Suppose that there exist a positive γ and an algorithm A that approximates
the size of a sparsest k-TC-spanner within 1 + γ. Namely, A outputs s, such that
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OPTS ≤ s ≤ (1 + γ)OPTS. We show that γ ≥ c
19+6k , where c is the constant from

Theorem 3.25.
Each set d contained in an optimal solution to R covers at most three elements

of the universe X . Therefore, |X | ≤ 3OPT3NC . Any element of X is contained in
at most 2 sets of D and, therefore, |X | ≥ n

2 . This implies that n ≤ 6OPT3NC . Let
s′ = s− (k + 3)n. Then

OPT3NC ≤ s′ ≤ OPT3NC + γ(OPT3NC + kn+ 3n)

≤ OPT3NC + γ(OPT3NC + 6kOPT3NC + 18OPT3NC)

= OPT3NC(1 + γ(19 + 6k)).

Finally, Theorem 3.25 implies that γ ≥ c
19+6k . Thus, γ = Ω( 1k ).

4. Sparse k-TC-spanners for path separable graphs. The previously known
TC-spanner constructions (e.g., in [42] the authors give 2-TC-spanners for planar di-
graphs of size O(n3/2 logn) using Lipton–Tarjan separators [53]) follow a divide-and-
conquer approach. We cut the graph into two or more roughly equal-sized compo-
nents, ensure that comparable vertices in different components have a path of length
at most k between them, and then recurse on each component. In this section, we
extend the divide-and-conquer approach to improve TC-spanner constructions for
planar digraphs and, more generally, for graph families with a fixed forbidden minor.

For our divide-and-conquer approach, we require that the digraphs in question
have “small” separators. The most useful notion of separability for our purposes is
path separability.

Definition 4.1 (a variant of [1]). Let G be a connected undirected graph with
n vertices. The graph G is (s,m)-path separable (for m ≥ n/2) if for every rooted
spanning tree T of G, at least one of the following holds:

1. there exists a set S of at most s monotone paths4 in T , such that each con-
nected component of G\S is of size at most m, or

2. for some s′ < s, there exists a set S of s′ monotone paths in T , such that the
largest connected component of G\S is (s− s′,m)-path separable.

If G is (s, n/2)-path separable, it is also called s-path separable.
Suppose G is s-path separable. Then if we run the recursive process described by

Definition 4.1 and fix a choice of rooted spanning tree T at each step, then we obtain
a collection S of s paths in G such that each connected component of G \ S is of size
at most n/2. We will refer to such a collection S as an s-path separator of G.

Note that the total number of vertices in an s-path separator is left unspecified.
Trees are 1-path separable, since S can be taken to be the centroid. Similarly, graphs
of treewidth w are (w+1)-path separable. Thorup [71] showed that every planar graph
is 3-path separable. Indeed, for every planar graph G and every rooted spanning tree
for it, he proved that there exists a set of three root paths of the tree whose removal
disconnects the graph into components of size at most n/2. Abraham and Gavoille [1]
studied the more general case of H-minor-free graphs. For a fixed graph H , we say
that a graph is H-minor-free if it belongs to a minor-closed graph family that does
not have H as a minor.

Theorem 4.2 (derived from Theorem 1 of [1]). Every H-minor-free graph is
s-path separable, for s = s(H). Moreover, for any H-minor-free graph G and for any
sequence of choices of rooted spanning trees in Definition 4.1, an s-path separator for
G can be computed in polynomial time.

4A monotone path in a rooted tree is a subpath of a path with one endpoint at the root.
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The definition of path separability used by Abraham and Gavoille is slightly
different from Definition 4.1. Namely, in the recursive process naturally described by
our Definition 4.1, the monotone paths to be removed may be chosen from different
spanning trees of G at different levels of recursion. In contrast, Abraham and Gavoille
insist that all the paths come from the same spanning tree of G. However, if one
inspects Abraham and Gavoille’s proof of Theorem 4.2, it can be readily seen [43]
that the separators obtained satisfy our stronger notion of path separability. The
flexibility in choosing different spanning trees at different levels of recursion forms a
key part of our argument.

Our main theorem in this section is the following.
Theorem 4.3. If G′ belongs to an H-minor-free graph family (where H is a fixed

minor), and if G is a directed graph whose underlying undirected graph is G′, then G
has a 2-TC-spanner of size O(n log2 n) and, more generally, a k-TC-spanner of size
O(n · logn · λk(n)), where λk(·) is the kth-row inverse Ackermann function.

As mentioned in section 1.2, these results are superior to previous constructions
used in the access control literature [10]. Additionally, as pointed out after Lemma 1.2,
Theorem 4.3 produces monotonicity testers with better query complexity than previ-
ously known for minor-closed poset families whose Hasse graphs forbid a fixed minor.

Proof of Theorem 4.3. By Theorem 4.2, graph G′ is s-path separable for a con-
stant s.

First, we describe a preprocessing step resembling that in [71] in which the di-
graph is divided into subgraphs so that constructing a TC-spanner of each subgraph
individually results in a TC-spanner of the entire graph. Then we show how to effi-
ciently construct sparse 2-TC-spanners of all these path separable subgraphs. Finally,
we give our construction for general k ≥ 3.

Preprocessing step. Let G be a transitively reduced, connected digraph. If G
is not weakly connected, we can apply our algorithm on each component. Choose an
arbitrary vertex r ∈ V (G). Let L0 be the set containing r and all vertices reachable

from r by a directed path. Let L1
def
= {v ∈ G \ L0 : ∃u ∈ L0 such that v � u}.

Similarly for i ≥ 1, let L2i
def
= {v ∈ G \ ∪2i−1

j=0 Lj : ∃u ∈ ∪2i−1
j=0 Lj such that u � v}

and L2i+1
def
= {v ∈ G \ ∪2i

j=0Lj : ∃u ∈ ∪2i
j=0Lj such that v � u}. Then L0, L1, . . . , Lt

partition the vertices of G, for some integer t ≤ n. The following claim follows easily
by the definitions of Lj.

Claim 4.4. For all vertices u, v ∈ G, if u �G v and if u ∈ Li and v ∈ Lj, then
|i− j| ≤ 1.

For 1 ≤ i ≤ t, let Gi
def
= Li−1 ∪ Li. By Claim 4.4, any two vertices with a

dipath between them must both be contained in some Gi. Moreover, any dipath
between them must lie entirely in Gi. Therefore, a k-TC-spanner of G is the union of
k-TC-spanners of all Gi. Notice that

∑
i |V (Gi)| ≤ 2|V (G)|.

We next construct a spanning tree TG for G′, the undirected graph underlying G,
that is rooted at r and has the following property: for any monotone path in TG from
the root, the restriction of the path to a single level Li consists of a single directed
path in G.

TG can be constructed inductively. First, since by definition r reaches all the
vertices in L0, a spanning tree of L0 rooted at r can be constructed with all edges
oriented away from r. Now, suppose we have a tree Ti−1 that is rooted at r, spans all
vertices in ∪i−1

j=0Lj, and the restriction of any monotone path in Ti−1 from the root to
each level 0, . . . , i − 1 consists of a single directed path. If i is odd, by the definition
of Li, Ti−1 can be extended to a tree Ti so that Ti spans all vertices in ∪i

j=0Lj and
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all the new edges of Ti are oriented towards ∪i−1
j=0Lj. Similarly, when i is even, by

the definition of Li, Ti−1 can be extended to a tree Ti so that Ti spans all vertices in
∪i
j=0Lj and all the new edges of Ti are oriented from ∪i−1

j=0Lj . Our desired spanning
tree TG is Tt. The following lemma is immediate by the construction.

Lemma 4.5. For all i ∈ [t], a monotone path in TG restricted to Gi is a concate-
nation of at most two dipaths.

Case k = 2. We now describe how to construct H , a 2-TC-spanner of G.

The recursive graph fragmentation. First, we apply the preprocessing step

described above to G0 def
= G; that is, we obtain a spanning tree TG0 and a collection

of subgraphs G0
1, G

0
2, . . . , G

0
�0

for some �0 ≤ n. By definition of path separability,
there exists a set P 0 of monotone paths on TG0 such that one of the two situations
occurs: (1) all the connected components in G0 \ P 0 are of size at most n/2, (2) the
largest component of G0 \ P 0 is of size greater than n/2 and is path separable. If
(2) holds, let G1 denote the induced subgraph of G0 on the largest component of
G0 \ P 0. We can apply the preprocessing to G1 to obtain a collection of subgraphs
G1

1, G
1
2, . . . , G

1
�1
, for some �1 ≤ n and a spanning tree TG1 rooted at some arbitrary

vertex in G1. Again, we find an appropriate set of paths P 1 in TG1, and we recurse if
necessary on the largest component of G1 \ P 1. The recursion ends when the graph
has been disconnected into components of size at most n/2. Notice that the total
number of paths in P 0 ∪ P 1 ∪ · · · is at most s = Θ(1) since G is s-path separable,

and we then recurse only a constant number of times. Let S
def
= P 0 ∪ P 1 ∪ · · · be the

set of all the paths in the path separator. By Theorem 4.2, S can be computed in
polynomial time.

Connecting the cut pairs in G. Call a pair of vertices (u, v) a cut pair if
u�G v and every directed path from u to v intersects a path in S. We show how to
construct edges of H that connect every cut pair by a path of length at most 2.

Do the following for every vertex v ∈ V (G). Let I = {i : v ∈ V (Gi)} and,
additionally, for each i ∈ I, let Ji = {j : v ∈ V (Gi

j)}. Note that |Ji| ≤ 2 for all i ∈ I.

For each i ∈ I and each j ∈ Ji, let P i
j denote the restriction of the paths in P i to

Gi
j . Each undirected path in P i

j is a concatenation of at most two directed paths by

Lemma 4.5. Break up the paths in P i
j into at most two dipaths. Consider some dipath

P ∈ P i
j which visits the vertices p1, p2, . . . , pm in that order, where m ≤ |V (Gi

j)|. For
simplicity of presentation, so as to not worry about floors and ceilings, assume that
m is a power of 2 minus 1. First, choose the midpoint p(m+1)/2 as a “hub.” For all
the vertex v ∈ V (Gi

j) such that v �G p(m+1)/2, add an edge from v to p(m+1)/2 to H .

Similarly for all the vertex v ∈ V (Gi
j) such that p(m+1)/2 �G v, add toH an edge from

p(m+1)/2 to v. These edges connect all the cut pairs (u, v) ∈ V (Gi
j)×V (Gi

j) such that
min�{1 ≤ � ≤ m : u�G p�} ≤ (m+1)/2 and max�{1 ≤ � ≤ m : p� �G v} ≥ (m+1)/2
by a path of length at most 2. These edges are called the edges of level 1. In the
next level 2, we recursively choose two midpoints p(m+1)/4 and p3(m+1)/4 of the two
halves as additional hubs. For each vertex v ∈ V (Gi

j) such that v �G p3(m+1)/4, add
to H an edge from v to py1·(m+1)/4, where y1 = miny{1 ≤ y ≤ 3 : v �G py·(m+1)/4}.
Similarly for each vertex v ∈ V (Gi

j) such that p(m+1)/4 �G v, add an edge from
py2·(m+1)/4 to v where y2 = maxy{1 ≤ y ≤ 3 : py·(m+1)/4 �G v} to H . Then the new
edges of H added in the level 2 connect all the cut pairs (u, v) ∈ V (Gi

j)×V (Gi
j) such

that miny{1 ≤ y ≤ 3 : u �G py·(m+1)/4} = maxy{1 ≤ y ≤ 3 : py·(m+1)/4 �G v} by a
path of length at most 2. Repeat this process for every level. Formally, for each level
1 ≤ z ≤ log2(m+1), we add (at most) two edges in H as follows. (i) An edge from v
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to py1·(m+1)/2z , where y1 = miny{1 ≤ y ≤ 2z : v � py·(m+1)/2z in G} and (ii) an edge
to v from py2·(m+1)/2z , where y2 = maxy{1 ≤ y ≤ 2z : py·(m+1)/2z � v in G}. If any
of the sets inside the min or max is empty, do not add the respective edge. Repeat
this process for every separator dipath in S that is a subpath of an undirected path
in some P i

j .

Outer recursion. For each connected component C of G \ S, recurse the above
process on the subgraph induced by C. Note that C is also path separable since the
graph family is minor-closed.

Lemma 4.6. The above construction produces a 2-TC-spanner of G of size
O(n log2 n) in polynomial time.

Proof. Let us first see why connecting every cut pair by a path of length at most
2 and recursing on smaller components produce a 2-TC-spanner of G. Indeed, if (u, v)
is a cut pair, then the first step ensures a path of length at most 2 between them.
If (u, v) is not a cut pair but there exist some dipaths from u to v, then u and v
are in the same component C of G \ S, and there exists a dipath between them that
lies entirely within this component. In this case, constructing a 2-TC-spanner of the
subgraph induced by this C suffices to connect u and v by a path of length at most 2.

Let us now argue that our process connects every cut pair by a path of length at
most 2. Consider some cut pair (u, v). Let i be the smallest nonnegative integer such
that every dipath from u to v intersects a path in ∪i′≤iPi′ . Therefore, there must be
a dipath from u to v entirely contained in Gi, and by Claim 4.4, it follows that there
is a j such that both u and v are in Gi

j . Suppose P ∈ P i
j is a separator dipath of

length m (a power of 2) that intersects a dipath in Gi from u to v, and as before,
let p1, . . . , pm be the vertices on P in that order. Let y1 = miny{y : u �Gi py} and
y2 = maxy{y : py �Gi v}. y1 ≤ y2 because, otherwise, there cannot be a vertex on P
that lies on a path from u to v. Then there exists some level z ∈ {1, 2, . . . , log2(m+1)}
such that there is a unique y ∈ {1, 2, . . . , 2z − 1} for which y · (m + 1)/2z is in the
interval [y1, y2]. Moreover, u � py1 � py·(m+1)/2z � py2 � v. Therefore, the edges
(u, py·(m+1)/2z) and (py·(m+1)/2z , v) are in H by our construction.

In connecting the cut pairs in Gi
j , we add O(s |V (Gi

j)| log |V (Gi
j)|) edges because

there are O(s) separator dipaths in Gi
j and for any separator dipath P , each vertex in

Gi
j is connected to at most 2(log2 |V (P )|+ 1) = O(log |V (Gi

j)|) vertices on the path.

Recall that there are only a constant number of Gis and
∑

j |V (Gi
j)| ≤ 2|V (Gi)|.

Thus, if S(G) denotes the total number of edges in the constructed 2-TC-spanner
of G, then

S(G) ≤
∑

C is a c.c. of G\S
S(C) +O

(
max

i

∑
j

O(|V (Gi
j)| · log |V (Gi

j)|)
)

≤
∑

C is a c.c. of G\S
S(C) +O(n log n).

Since |V (C)| ≤ n/2 for any connected component of G \ S, it follows that S(G) =
O(n log2 n).

Since the path separators can be found in polynomial time, as guaranteed in
Theorem 4.2, it is clear that the above 2-TC-spanner can be constructed in polynomial
time.

Case k > 2. We now prove Theorem 4.3 for general k. As before, assume that
G is transitively reduced and connected. We construct H , a k-TC-spanner of G.
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We perform the same preprocessing as before in order to obtain induced subgraphs
G0, G1, . . . and a corresponding s-path separator S = P 0∪P 1∪· · · . Define a cut pair
(u, v) to be a pair of vertices in G such that u � v and every directed path from u
to v intersects a path in S. This time, our plan is to connect all cut pairs by a path
of length at most k and then to recurse on each of the connected components that
remain after removing the vertices in the paths of S. By the argument used earlier,
this process produces a k-TC-spanner in polynomial time.

Now we show how to connect cut pairs (u, v) with a path of length at most k.
Do the following for every vertex v ∈ V (G). Let I = {i : v ∈ V (Gi)} and for each
i ∈ I, let Ji = {j : v ∈ V (Gi

j)}. Do the following for each i ∈ I and for each j ∈ Ji.

Let P i
j be the restriction of the paths in P i to Gi

j . Break up the undirected paths

into dipaths, increasing the size of P i
j by a factor of at most 2. Do the following for

each dipath P ∈ P i
j . Let m be the length of P which visits vertices p1, p2, . . . pm in

that order. The construction is similar to the case k = 2, except that each vertex
in G is connected to fewer vertices in S and, additionally, we add to H edges of a
(k − 2)-TC-spanner for subpaths of the dipath {p1, p2, . . . , pm}.

Let c(�) be a concave increasing function of �, such that �/c(�) is an increasing
function of � (and hence, c(�) < �). We will exactly specify the function c(�) later.
For simplicity of presentation, we omit all floors and ceilings. Let c∗(�) denote the
smallest z such that cz(�) ≤ 3, where cz(·) denotes the zth functional power of c.
As in the case k = 2, for each z such that 1 ≤ z ≤ c∗(m), for each vertex v of
G, add the following two edges to H : (i) an edge from v to py1·cz(m), where y1 =
miny{1 ≤ y ≤ m/cz(m) : v � py·cz(m) in G} and (ii) an edge to v from py2·cz(m),
where y2 = maxy{1 ≤ y ≤ m/cz(m) : py·cz(m) � v in G}. If any of the sets inside the
min or max is empty, do not add the respective edge.

Finally, do the following for every dipath P ∈ P i
j that visits vertices p1, p2, . . . , pm

in that order.

Algorithm. Connect-On (Input: dipath P ).
1. Add to H the edges of a (k − 2)-TC-spanner for the directed path on

vertices pc(m), p2c(m), . . . , pm in that order.
2. Remove the vertices {pc(m), p2c(m), . . . , pm} from P and run Connect-On

on each connected component of P that remains.

Our construction of H is completed by recursing on components of size less than
n/2 that remain in G\S. It is not hard to see that H is indeed a k-TC-spanner, using
the same argument as in the case k = 2. The only difference is that now, for a cut
pair (u, v), it could be that u and v are adjacent to different vertices on the separating
dipath. But we have the guarantee, by connect-on above, that two path vertices in
the same recursion level of connect-on have a path of length at most k− 2 between
them. Hence, it follows that u and v have a path of length at most k between them.

Now, we bound the size of H . Let us count the number of edges added in each
step of the outer recursion (that is, before recursing on components of G\S). For each
vertex v and for each separating dipath P , we add O(c∗(n) edges incident to v. Since
the total number of paths is O(1), the total number of edges added to connect vertices
to separating dipaths is O(nc∗(n)). Next, we bound the number of edges added by
the connect-on procedure. The goal is to show that this bound also is O(nc∗(n)).
Denote by �(n, k) the quantity Sk(Ln), the size of the optimal k-TC-spanner of the
directed path on n vertices. Let f(m) be the number of edges added to H that areD
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incident to some particular separating dipath P ∈ P i
j of size m. Then

f(m) ≤ �

(
m

c(m)
, k − 2

)
+

m

c(m)
· f(c(m)) ≤ �

(
n

c(n)
, k − 2

)
+

n

c(n)
· f(c(n)),

where the first term comes from the first step of connect-on and the second term
comes from the second step. In order for f(m) to be O(nc∗(n)), it can be seen that we
need to have �( n

c(n) , k−2) = O(n). Using the fact from [5] that �(n, k) = Θ(n ·λk(n)),

we get c∗(n) = O(λk(n)). This choice makes the solution of the above recurrence
f(m) ≤ O(nc∗(n)) = O(nλk(n)). Finally, since there are logn levels of the recursion
at the top level (at each level, the size of the largest component is decreased by a factor
of 2), the total number of edges added to H is O(n · logn · c∗(n)) = O(n · logn ·λk(n)),
as desired.
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