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Among various fields of complex networks, information diffusion has recently at-
tracted huge attention due to the growing popularity social network services and
increasing accessibility of their data. Indeed, analysis of information diffusion pat-
terns not only can be widely applicable from epidemiology to viral marketing, but
also can greatly benefit to society by offering predictions of information flows.

To shed light on how new ideas, technologies, and epidemics diffuse through
networks, numerous models have been established [5, 9, 4]. Kempe, Kleinberg,
and Tardos (2003) integrated those previous models to propose two fundamental
models, (the linear threshold model and the independent cascade model) and their
generalizations (the general threshold model and the general cascade model) [6].
In particular, the threshold model assumes that an individual needs to have enough
proportion (or threshold) of his neighbors who have previously influenced by the
same information. This mechanism is based on utility maximization of individuals
in game theoretic consideration. Despite its significance, because of its difficulties,
analysis of the threshold models have entirely focused on limited conditions such as
the submodular influence (by Mossel-Roch (STOC 07)), homogeneous thresholds
(by Whitney(Phys. Rev. E. 10)), and locally tree-like networks (by Watts(PNAS
02)) [7, 11, 10].

Under the general threshold model and arbitrary networks, we proved that only
if all nodes are of degrees ω(logn), the final cascade size is highly concentrated
around its mean with high probability. In other words, for any ε > 0 and δ > 0,

Pr(|Z −σ |> nε) = o(n−δ )
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where Z is the final cascade size, σ = E[Z ] and n is the number of individuals
constituting a network. our result is also valid for the independent cascade models,
the linear threshold models and Katz-Shapiro models – a special case of the linear
threshold model. Our proof implies that the influence, or the expected cascade size,
is asymptotically invariant to the network structures. Along with this proof, we pro-
vide a formula under the linear threshold model and an efficient algorithm under the
general threshold model that estimate the average cascade size and the probability
of being influenced for each individual.

Being comparable with one trial of Monte-Carlo experiments, our algorithm can
be used for a tipping point prediction problem [3] and an influence maximization
problem [2, 8]. The former problem refers to predicting a phase transition in the
final cascade size. Because a special case of our diffusion process can be regarded
as diffusion of innovation initiated by public marketing, our formula can provide the
minimum intensity of public marketing to trigger a large cascade on a network so
that the marketing succeeds. The latter problem indicates identifying a most influen-
tial set of initial adopters of a specific size which maximizes the final cascade size.
Closely related to the targeted marketing with word-of-mouth effects, this problem
is known as NP-hard under the linear threshold model and the independent cascade
model [6]. Our algorithm can be employed as a subroutine of many approximation
algorithms such as [1].

On top of this, we confirmed by performing extensive experiments that the final
cascade size is actually concentrated around its mean and a tipping point appears at
the predicted point.
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