
Tipping Point of Information Spreading in
Random Clustered Networks with
Heterogeneous Contact Rates

Tipping point phenomena for information spreading in complex networks have been
studied for decades in various disciplines. A tipping point is a moment at which in-
formation suddenly spreads rapidly and globally. Understanding how tipping points
occur in networks is an important problem, which is closely related to the eruption
of an epidemic in epidemiology, the initiation of a trend in marketing, and so on. In
this work, we identify condition for tipping points to occur and analyze spreading
behaviors in random clustered networks with heterogeneous contact rates.

The Susceptible-Infected-Recovered (SIR) model and its variants have been
widely used to explain the tipping point phenomena [3]. Much of the previous re-
search on the SIR model have concentrated on locally tree-like networks such as the
configuration model. However, triadic closure (friends of friends are more likely to
become friends) occurs in social networks. To demonstrate this, Newman and Miller
proposed simultaneously a model for random clustered networks by considering the
degree distribution and the number of triangles each node participates [4, 2].

Miller introduced a method to calculate the probabilities and the sizes of the
large-scale spreading in random clustered networks for constant contact rates [2].
However, contact rates almost never be the constant in social networks. Let f (i, j)
be the contact rate between an infectious node i and its susceptible neighbor j. For
example, if we assume that each user can read c messages per a day from his or her
friends equally likely, then f (i, j) = c/d j where d j is the degree of j. Likewise, if we
assume that each user can send c messages to his or her friends equally likely, then
f (i, j) = c/di. In this work, we consider arbitrary contact rate f (i, j), and obtain a
necessary and sufficient condition for the tipping point occurrence under the random
clustered network. We also obtain formulas to compute the probability and the size
of the large-scale spreading.

Suppose that we have two sequences s = (s1, . . . ,sn) and t = (t1, . . . , tn), where
si is the number of incident edges of a node i that are not included in any triangle
and ti is the number of triangles that contain a node i. The general random clus-
tered network G(s, t) is a probability space over the set of networks on the node
set {1, . . . ,n}, so that it is determined by adding an edge with probability sis j/∑x sx
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for each pair of nodes i and j, and also joining three nodes to form a triangle with
probability tit jtk/∑x<y txty for each triple of nodes i, j and k. If we take s = d and
t = 0, it is equivalent to the configuration model with a given degree sequence d [5].

Let S be the probability that a randomly chosen node is contained in a large-
scale spreading and S j be the probability that a node j is contained in a large-scale
spreading. Then, we obtain the following formula for each S j,

1−S j = ∏
i6= j

(1− k( j, i) f ( j, i)Si) , (1)

where k( j, i) = s jsi/∑x sx + t jti ∑k tk/∑x<y txty is the probability that there is an edge
from i to j in a random clustered network. We solve (1) by taking the logarithm of
both sides and applying the first-order Taylor series approximation, and show that
it computes asymptotically correct values of S j for random clustered networks with
any power-low degree distribution. Then, we compute the size of the large-scale
spreading S = 1

n ∑
n
j=1 S j. Note that a large-scale spreading can occur if and only

if S = Ω(1). The above formula is a very general framework. For example, when
f (i, j) = c/(si + 2ti) or c/(s j + 2t j), we prove that for any (s, t) with power-law
degree distribution the large-scale spreading occurs if c > 1, and it does not occur if
c < 1. If si = np and ti = 0 for all i, our result is identical to the well-known result
for the Erdős-Rényi random graph G(n, p) [1].

Using a similar argument, we also compute the probability that a large-scale
spreading occurs when the spreading is initiated by a single node. Our argument
can be applied to any specific substructure of the network of finite size including
cliques, motifs, and chains rather than triangles. Furthermore, we provide a formula
to estimate the probability and the size of the large-scale spreading when the net-
work topology is given and not random.

We conducted Monte Carlo experiments of information spreading on real-world
social network topologies such as Facebook(63K nodes) and MySpace(100K nodes)
to compare the computed values of the sizes and the probabilities of the large-
scale spreading based on our proposed method with the Monte Carlo estimates.
We performed simulations of three different contact rates f (i, j) = c/di, c/d j, and
c/di+c/d j where c is some constant varying from 0 to 3. The simulations show that
the values obtained by our formula with random clustered networks (0∼ 5% error)
are more accurate than with configuration models (0 ∼ 7% error). Moreover, the
accuracy of predictions using our formula for the actual network topology (0∼ 1%
error) is better than the accuracy of predictions using random clustered networks.
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