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Abstract

Locality sensitive hashing (LSH) has been used extensivelyas a basis for many
data retrieval applications. However, previous approaches, such as random projec-
tion and multi-probe hashing, may exhibit high query complexity of up toΘ(n)
when the underlying data distribution is highly skewed. This is due to the imbal-
ance in the number of data stored per each bucket, which leadsto slow query time
in large data sets. In this paper, we introduce a distribution-free LSH algorithm
that addresses this problem by maintaining nearly uniform number of points per
bucket. As a consequence, our algorithm allows one to reducethe number of hash
tables, and is hence memory-efficient, while achieving highaccuracy. Through
extensive experiments, we show that our algorithm accurately retrieves nearest
neighbors faster than other standard LSH algorithms do in large data sets, and
maintains nearly uniform number of per-bucket points.

1 Introduction

Recent explosion in the amount of data has placed huge importance in big-data management. As
a consequence, many applications over diverse fields such asdatabase, artificial intelligence, and
social network analysis have found the need to modify existing algorithms to scale the performance.
Data retrieval is one such area of importance, due to its roleof providing a “base system” for many
other applications. In particular, we focus onlocality-sensitive hashing (LSH), which is one of the
most popular data retrieval frameworks, and present an algorithm that has low query time complex-
ity under any metric.
LSH can be thought of as a meta-algorithm that allows for faststoring and retrieval of large number
of data points, by grouping closer data items together with high probability. Some of the popular
LSH algorithms that have been proposed include MinHash [6, 10], random projection [2], multi-
probe LSH [7], andp-stable distribution projection [1], which have good provable accuracy guar-
antees. However, they may perform poorly when the underlying distribution of the data is highly
skewed, resulting in serious imbalance in the number of items per bucket. This is because if the
size of bucketi is bi, the total query time becomesΘ(

∑

i b
2
i ) if the query comes randomly from

the underlying data distribution. This leads to highly variable query time depending on the bucket
size, and is hence inefficient for large data sets. Our algorithm minimizes this quantity by evenly
distributing the points in each bucket. A work by [11] proposed a similar idea, where the partition-
ing is done along the axes of largest variance. However, thisonly allows for axis-parallel partitions,
whereas our approach constructs more flexible boundaries.
Another shortcoming of previous approaches is that the metric under which the similarity is mea-
sured may be restricted (i.e., Hamming distance orL2-norm). In this work, we present Distribution-
Free LSH (DFLSH), that overcomes the high query complexity under any distance metric. Compared
to the standard LSH algorithms mentioned above, our algorithm lowers the worst-case query com-
plexity by gathering a uniform number of points per bucket regardless of the data distribution and
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distance metric. Also,DFLSH requires less hash tables to achieve similar level of accuracy of other
LSH algorithms, leading to faster running time and more efficient memory usage. We verify this
fact empirically in Section 4. Finally,DFLSH efficiently operates on a variety of metrics, including
theLp-norm, shortest-path graph distance, and the kernel-induced distance metric.

1.1 Preliminaries

The problem we aim to solve is thek-nearest neighbor problem (k-NN problem), which provides a
basis to many popular applications.

Definition 1 (k-NN problem). Given a set P ⊂ U , a distance metric d : U ×U 7→ R
+, and a query

point q ∈ U , return a set S = {pi|i = 1, · · · , k} ⊆ P of k points such that for all r ∈ P − S,
d(r, q) ≥ d(pi, q), ∀pi ∈ S.

Our algorithm can be applied to any metric spaceU , including graph distance and the kernel-based
distance, but we focus onU ⊆ R

D for ease of explanation. We assume that the data pointsP come
from an unknown underlying probability densityP onU .
To solve thek-NN problem, the LSH framework uses a collectionH of functions that satisfies the
locality sensitive property [3]:

Definition 2. Given r > 0, c > 1, 1 > p1 > p2 > 0, a family of functionsH = {h|h : U 7→ C} for
a set of buckets C, is called a (r, cr, p1, p2)-sensitive hash family if for any p, q ∈ U ,

Pr(h(p) = h(q)) ≥ p1, if d(p, q) ≤ r

Pr(h(p) = h(q)) ≤ p2, if d(p, q) ≥ cr,

for all h ∈ H, where the probability is over the choice of h fromH.

The de-facto standard procedure for solving thek-NN problem using(r, cr, p1, p2)-sensitive hash
functions is as follows. The main idea is to maintainL hash tables in order to to amplify the
probability of correctly locating any given element (i.e., inducingcollision). That is, whenr is the
maximum distance betweenq and its nearest neighbor, the probability that at least one table yields
the correct nearest neighbor is at least1−(1−p1)

L. In the next section, we present our novel design
of h for tackling thek-NN problem for arbitraryP .

2 Algorithms

We present our Distribution-Free LSH (DFLSH) algorithm for solving thek-NN problem. The main
idea ofDFLSH is to randomly partition the data space intot disjoint cells in a way that each cell has
roughly the same number of points. To create such a partition, we first sample{c1, · · · , ct} ⊂ P
uniformly at random, in order to sample from the underlyingP . Based on theset points, which
we call thecentroids, we construct aVoronoi partition of P : a partition{C1, · · · , Ct} such that
Ci = {p|d(p, ci) ≤ d(p, cl) ∀cl}, where ties are broken arbitrarily. We empirically show in Section 3
that this construction partitions the data space nearly uniformly (i.e., O(n/t) points per bucket). We
repeat the constructionL times, each in a uniformly random manner, to createL tables. The overall
procedure is outlined in Table 1 (Appendix A).
Querying this hash table is straightforward: 1) Iterate through allt centroids to choose the closest
cell Ci∗ (in time O(t)), and 2) linearly search through all points contained inCi∗ to select NN
candidates (in timeO(n/t)).
A reasonable value to use fort is

√
n, which makes the time to locate the nearest Voronoi cell and

the time to linearly search through points in that cell equal. That is, settingt =
√
n equates the two

complexities, yieldingO(
√
n) per table. Overall, the construction takesO(LDn3/2) time, and the

query complexity becomesΘ(LD
√
n).

The above algorithm assumes thatP is given in the beginning. But it is possible to extend our
algorithm to an online setting, where the data points are streamed in. In this case, we adopt
a dynamic centroid selection/deletion procedure, where the mth point becomes a centroid with
probability m−1/2 and is removed from the centroid set at the(m + v)th step with probability
√

m/(v − 1)−
√

m/v. Once a point is removed from the centroid set, it is never re-selected. This
selection/deletion procedure ensures that each point is selected with probabilitym−1/2 at themth

step.
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We also present a multi-probeDFLSH for querying, where we selectℓ nearest centroids, instead
of just one, to ensure wider coverage. Multi-probing allowsto maintain a small number of hash
tables to maintain high accuracy and fast running time. We show this through extensive experi-
ments in Section 4. The order of the query complexity for the multi-probeDFLSH is the same as
a single-probe version, sinceℓ is fixed constant. The procedure for multi-probeDFLSH is outlined
in Appendix A.

It is straightforward to extendDFLSH to a kernelized setting [5] (KLSH), where the items are
mapped to some feature space via the kernel trick. Given a kernel functionκ : U × U 7→ R,
we can compute the distance asdκ(p, q) , κ(p, p) − 2κ(p, q) + κ(q, q). This approach yields
a faster pre-processing step than the previous KLSH algorithm [5], since only the distance in the
feature space is needed.

Finally, we propose a hierarchicalDFLSH in Appendix A.2, which recursively partitions each
Voronoi cell h times in the same manner, whereh is the recursive depth. This approach yields
construction and query complexities ofO(LDn4/3) andO(LDn1/3), respectively forh = 2, which
are less than those of the non-hierarchicalDFLSH (h = 1). Because of the exponential decrease in
the number of points per cell withh, the hierarchical scheme works best whenn is very large (about
> 1 million).

3 Analysis

The analysis of our algorithm is done over two aspects: 1) whetherDFLSH satisfies the locality-
sensitive property, and 2) the time complexity of querying apoint.

Locality-Sensitivity We first analyze the probability that a miss occurs, in a single table, between
two itemsp and q when d(p, q) = r. When computing this probability, we assume that there
is on average one point per unit volume, without loss of generality. Although the condition for
Theorem 1 is that each cell’s density be uniform, the theoremis still applicable to arbitraryP , since
the distribution within each cell becomes close to a uniformdistribution asn increases.

Theorem 1. The probability that points p, q ∈ R
D do not collide, given their distance r, is

p(r) = Pr(h(p) 6= h(q)|r) =
∫ ∞

0

u(r1)

∫ r+r1

|r−r1|

s(r2)(1− exp(−CDrD2 n−1/2))dr2dr1,

where CD is the volume of a unit ball in R
D and,

u(r1) =DCDn−1/2rD−1

1 exp(−CDn−1/2rD1 ), s(r2) =
(D − 1)CD−1g

D−3

DCDrD−2

1

,

g =
2

r

√

l(l− r)(l − r1)(l − r2), l =
r + r1 + r2

2
.

Becausep(r) monotonically increases withr, our hash functions satisfy the(1, c, p1, p2)-sensitivity
property by settingp1 = 1− p(1) andp2 = 1− p(c) for anyc > 1. For the bound on accuracy, we
provide a numerical analysis ofp(r) in Appendix C.

Query Complexity Next, we empirically show that the query complexity is low compared to other
algorithms. As mentioned above, the query complexity is thesquared sum of the bucket sizes:
Θ(

∑

i b
2
i ), wherebi is the number of points in bucketi. We plot this quantity for Multi-probe LSH

(MPLSH), Non-uniform partitioning LSH (NULSH),DFLSH, and Hier-DFLSHin Figure 1, each
with equal number of buckets.
The data we use is a synthetically-generated mixture of three Gaussians of dimensions 10 and 50
(see Section 4 for details). Figure 1 shows this quantity is lowest for our two algorithms for the
synthetic data set.

4 Experiments

In this section, we verify the efficiency ofDFLSH and Hier-DFLSH through extensive experiments.
The data sets we use are the SIFT image feature data set (SIFT)[4], and an artificially-generated
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Figure 1:
∑

i b
2
i of each algorithm for the syn-

thetic data set.

set of Gaussian mixtures (AG) with varying dimensions of 10,30, and 50. The SIFT set consits of
1 million 128-dimensional image features. The algorithms we compare against are the multi-probe
LSH [7] (MPLSH)1, and the non-uniform LSH [11] (NULSH).
In each experiment, we randomly generate 100 queries and their corresponding 100 true nearest
neighbors. The accuracy of the algorithms is measured byrecall as done by [8]:|R∩G|/|G|, where
G is the ground-truth set andR is the set retrieved by the algorithms. All algorithms, including the
undisclosed NULSH, are implemented in C++.
Parameter Scaling For hash table parameter experiements, we examine the effects of the number
of hash tablesL, and the number of probesℓ for the multi-probe variant of our algorithm. Figures 2
and 3 show that bothDFLSH and Hier-DFLSH require small values ofℓ andL to achieve high
accuracy, while other algorithms are more sensitive to those parameters.
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Figure 2: Accuracy asℓ increases withL = 5.
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Figure 3: Accuracy asL changes, withℓ = 2.

Dimension Scaling This section presents the results on how performance varieswith respect to the
dimension of the data. In order to keep the nature of the data set as consistent as possible, we use
the artificially-generated AG set, with differing dimensions. Each algorithm is tested with 10 hash
tables and 2 probes. The result, which is given in Figure D, shows thatDFLSH achieves near-perfect
recall as dimension increases, while other algorithms degrade (Appendix D).
To see how long each algorithm requires to achieve the recallperformances given above, we show
the timing results in Table 4 (Appendix D). The timing results show thatDFLSH requires less than
0.05 seconds per query to achieve perfect recall, whereas other algorithms either performs worse, or
require ten times more query time.

1LSHKIT: http://lshkit.sourceforge.net
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Appendices

A Additional Algorithms

A.1 Pseudocode for Construction and Querying

Input: Set of pointsP , Number of cellst, Number of tablesL
Output: L Hash tables{Ti}Li=1

for all i ∈ {1, · · · , L} do
Si ← t uniform random samples fromP
Ti ← VoronoiPartition(P ,Si)

end for

Table 1:DFLSH: High-level hash table construction.

A.2 Hierarchical Scheme

To lower the query complexity, we propose a hierarchical Voronoi partitioning scheme. In this
approach, we recursively partition each Voronoi cell in thesame manner up to some depthh. In
order to reflect the hierarchical structure, we modify theL hash tables to beL trees, where each
tree has depthh. The internal nodes of each tree indicate the centroids by which the next level is
decided, and the leaves specify the final ground partition ofthe data.
Given a partition hierarchy, a query point is simply matchedto the nearest internal node (i.e., first-
level centroid) and traverses down the tree until it reachesa leaf node.
Similarly to the non-hierarchical case, we chooset = n1/3 andh = 2 to balance the time taken
to locate the cell and the time taken to linearly search through the points in the cells. Then, the
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Input: Query pointq, probe numberℓ
Output: Set of nearest neighbor candidatesC
S ← {}
for all i ∈ {1, · · · , L} do
V ← ℓ closest centroids (inTi) to q
for all c ∈ V do
S ← S ∪ {x|x ∈ c}

end for
end for
Linearly search throughS to returnk nearest neighbors

Table 2: Query procedure for the Multi-ProbeDFLSH.

construction and query complexities areO(LDn4/3) andO(LDn1/3), respectively. The following
algorithm shows how to constructone of hierarchical hash tables. One can repeat this procedure
L times to get a full table set. Because the number of points in the lowest-level cell becomes

Input: Set of pointsP , Number of bucketst, Current depthd
Output: TreeT

if d = 0 then
return P

end if
for all i ∈ {1, · · · , L} do
Si ← t Uniform random samples fromP
R← VoronoiPartition(P ,Si)
for all Rj ∈ R do
Tj ←Hier-DFLSH(Rj, t, d− 1)

end for
end for

Table 3:Hier-DFLSH

exponentially small as the recursive depth increases, the hierarchical scheme works best whenn is
very large.

B Proofs

B.1 Proof of Theorem 1

Let cp be the nearest centroid associated with pointp such thatd(p, cp) = r1, andr2 = d(q, cp).
Then,p andq are hashed into the same cell only if there is no centroid inB(q, r2). To compute the
probability of such an event, we use the following auxiliarylemma:

Lemma 1. Suppose the points are distributed at random with an average density of λ per unit area
in R. Then the distribution of the distance r from a random point to its nearest neighbor is given as:

u(r) = DCDλrD−1 exp(−CDλrD), (1)

where CD is the volume of the unit ball in R
D.

Proof. The proof is a high-dimensional extension of the one given in[9].

As a consequence, the cumulative distribution function (CDF)

U(r) = 1− exp(−CDλrD) (2)

of u(r) specifies the probability that there is no point inB(x, r) for a random pointx.
Another probability we should consider is that ofr2; i.e., the probability densitys(r2) whenr and
r1 are fixed. The region over the hypersphereB(q, r2) in R

D in which r2 is held constant forms a
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hypersphere of radiusg in R
D−1. Here,g is the height of the triangle whose base length isr, and

the lengths of the other two sides arer1 andr2. By Heron’s formula,g is given as:

g =
2

r

√

l(l− r)(l − r1)(l − r2),

wherel = (r + r1 + r2)/2. Hence, the final densitys(r2) is given as:

s(r2) =
(D − 1)CDgD−2dg

DCDrD−1
1

=
(D − 1)CDgD−3

DCDrD−2
1

, (3)

wheredg = r/g.
Based on Equation (1), Equation (2), and Equation (3), the probability thatq is not assigned tocp is
a double integral of the equations over all possible values of r1 andr2. The latter is restricted in the
range[|r − r1|, r + r1] by the triangle inequality.

p(r) =

∫ ∞

0

u(r1)

∫ r+r1

|r−r1|

s(r2)U(r2)dr2dr1.

Note that this expression is exact for uniformP , due to Lemma 1, but the density of each cell
becomes locally uniform asn grows. Since we are dealing with very large values ofn, the error
induced by non-uniformity becomes negligible.

C Numerical Analysis ofp(r)
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Figure 4: The plotting ofr vs. p(r), with varying dimensions.

Figure 4 shows the evaluation ofp(r) of Theorem 1 with respect to varying values ofr. Note thatr
is the distance between a random pair of nearest neighbors. Also, since we assume that there is one
point per unit volume on average, most nearest neighbors will have distancer = 1. This coincides
with the steep increase of the miss probability aroundr = 1.
From the definitoin of LSH, choosingL = O(1/p1) yields a collision probability of1 −
exp(−O(1)). Thus, the plot suggests that about1/p1 = 1/(1 − p(1)) ≈ 2, 3 tables suffice to
achieve high probability of collision for our(1, c, p1, p2)-sensitive LSH functions in 50 dimensions.
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Figure 5: Recall change as dimension increases.

D Additional Experiments

Figure D shows the recall change as the data dimension increases. The plot shows thatDFLSHmain-
tains recall higher than 0.995 as the dimension is increasedto 50, while the recalls of competing
algorithms degrade noticeably. The numbers in the last column (SIFT) are gathered by running

AG (D = 10) AG (D = 20) AG (D = 50) SIFT

MPLSH 0.086 (1.0) 0.09 (1.0) 0.091 (0.858) 0.009 (0.004)
NULSH 0.175 (0.911) 0.04 (0.603) 0.04 (0.287) 0.781 (0.772)
DFLSH 0.008 (1.0) 0.012 (1.0) 0.034 (0.995) 0.045 (0.884)

Hier-DFLSH 0.002 (1.0) 0.004 (1.0) 0.009 (0.787) 0.011 (0.804)

Table 4: Comparison of average query times (in seconds) over100 queries. Recalls are duplicated
in parentheses to aid the comparison of time-recall tradeoff.

each algorithm with 5 hash tables and 2 probes. It can be seen thatDFLSH and Hier-DFLSH require
an order of magnitude less time than the others to achieve similar or higher recall level.
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