Robust and Efficient Locality Sensitive Hashing for
Nearest Neighbor Search in Large Data Sets

Byungkon Kang Kyomin Jung
KAIST KAIST
Daejeon, Korea Daejeon, Korea
byungkon@xai st . ac. kr kyom n@ai st. edu
Abstract

Locality sensitive hashing (LSH) has been used extensagls basis for many
data retrieval applications. However, previous approsachech as random projec-
tion and multi-probe hashing, may exhibit high query comjtyeof up to ©(n)
when the underlying data distribution is highly skewed.sTisidue to the imbal-
ance in the number of data stored per each bucket, which teattsv query time
in large data sets. In this paper, we introduce a distribdfiee LSH algorithm
that addresses this problem by maintaining nearly unifoumimer of points per
bucket. As a consequence, our algorithm allows one to reitheceumber of hash
tables, and is hence memory-efficient, while achieving tagburacy. Through
extensive experiments, we show that our algorithm acclyraétrieves nearest
neighbors faster than other standard LSH algorithms dorgeldata sets, and
maintains nearly uniform number of per-bucket points.

1 Introduction

Recent explosion in the amount of data has placed huge iamm®tin big-data management. As
a consequence, many applications over diverse fields sudhtabase, artificial intelligence, and
social network analysis have found the need to modify exgstigorithms to scale the performance.
Data retrieval is one such area of importance, due to itsaiopeoviding a “base system” for many
other applications. In particular, we focus lmeality-sensitive hashing (LSH), which is one of the
most popular data retrieval frameworks, and present anigigothat has low query time complex-
ity under any metric.

LSH can be thought of as a meta-algorithm that allows forgemting and retrieval of large number
of data points, by grouping closer data items together wih fprobability. Some of the popular
LSH algorithms that have been proposed include MinHash &, random projection [2], multi-
probe LSH [7], anth-stable distribution projection [1], which have good prbleaaccuracy guar-
antees. However, they may perform poorly when the undeglglistribution of the data is highly
skewed, resulting in serious imbalance in the number ofdtper bucket. This is because if the
size of bucket is b;, the total query time becomé3(3", v?) if the query comes randomly from
the underlying data distribution. This leads to highly ahte query time depending on the bucket
size, and is hence inefficient for large data sets. Our algarminimizes this quantity by evenly
distributing the points in each bucket. A work by [11] propds similar idea, where the partition-
ing is done along the axes of largest variance. Howeverptflisallows for axis-parallel partitions,
whereas our approach constructs more flexible boundaries.

Another shortcoming of previous approaches is that theicetder which the similarity is mea-
sured may be restricted€., Hamming distance ak-norm). In this work, we present Distribution-
Free LSH DFLSH), that overcomes the high query complexity under any degtametric. Compared
to the standard LSH algorithms mentioned above, our alyorlowers the worst-case query com-
plexity by gathering a uniform number of points per buckefarelless of the data distribution and

distance metric. AlsdDFLSHrequires less hash tables to achieve similar level of acgwhother
LSH algorithms, leading to faster running time and more igffitmemory usage. We verify this
fact empirically in Section 4. Finall\pFL SH efficiently operates on a variety of metrics, including
the L,,-norm, shortest-path graph distance, and the kernel-gldistance metric.

1.1 Preliminaries

The problem we aim to solve is thienearest neighbor problem -NN problem), which provides a
basis to many popular applications.

Definition 1 (k-NN problem) Givenaset P C U, adistancemetricd : U x U — R™, and a query
pointg € U, returnaset S = {p;|i = 1,--- ,k} C P of k points such that for all » € P — S,
d(r,q) > d(pi,q), Yp; € S.

Our algorithm can be applied to any metric spatencluding graph distance and the kernel-based
distance, but we focus dii C R” for ease of explanation. We assume that the data p&imisme
from an unknown underlying probability densi®on U'.

To solve thek-NN problem, the LSH framework uses a collectifinof functions that satisfies the
locality sensitive property [3]:

Definition 2. Givenr > 0,¢> 1,1 > p; > py > 0, afamily of functions = {h|h : U — C} for

a set of buckets C, iscalled a (r, cr, p1, p2)-sensitive hash family if for any p, g € U,

Pr(h(p) = h(q)) > p1,ifd(p,q) <r
PT(h(p) = h(q)) S D2, if d(p7 Q) Z cr,
for all h € ‘H, where the probability is over the choice of 4 from .

The de-facto standard procedure for solving }aN problem using(r, cr, p1, p2)-sensitive hash
functions is as follows. The main idea is to maintdinrhash tables in order to to amplify the
probability of correctly locating any given elemeng(, inducingcollision). That is, when- is the
maximum distance betweegnand its nearest neighbor, the probability that at least abketyields
the correct nearest neighbor is at legst(1 —p;)~. In the next section, we present our novel design
of h for tackling thek-NN problem for arbitraryP.

2 Algorithms

We present our Distribution-Free LSBFL SH) algorithm for solving the:-NN problem. The main
idea of DFLSHis to randomly partition the data space intdisjoint cells in a way that each cell has
roughly the same number of points. To create such a partitverfirst sample{cy,--- ,c:} C P
uniformly at random, in order to sample from the underlyidg Based on these points, which
we call thecentroids, we construct a/fronoi partition of P: a partition{C1,--- ,C;} such that
C; = {pld(p,ci) < d(p,c;) Ve }, where ties are broken arbitrarily. We empirically show @con 3
that this construction partitions the data space nearffprmiy (i.e, O(n/t) points per bucket). We
repeat the constructiah times, each in a uniformly random manner, to crdatables. The overall
procedure is outlined in Table 1 (Appendix A).

Querying this hash table is straightforward: 1) Iteratetigh all¢ centroids to choose the closest
cell C;= (in time O(t)), and 2) linearly search through all points contained’in to select NN
candidates (in im®(n/t)).

A reasonable value to use fois /n, which makes the time to locate the nearest Voronoi cell and
the time to linearly search through points in that cell eqliahat is, setting = /n equates the two
complexities, yielding)(,/n) per table. Overall, the construction takegéL Dn>/?) time, and the
query complexity becomed(LD+/n).

The above algorithm assumes thatis given in the beginning. But it is possible to extend our
algorithm to an online setting, where the data points areastied in. In this case, we adopt
a dynamic centroid selection/deletion procedure, wheeentf point becomes a centroid with
probability m~'/2 and is removed from the centroid set at the + v)™ step with probability
v/m/(v—1) — /m/v. Once a point is removed from the centroid set, it is neveseleeted. This
selection/deletion procedure ensures that each pointdésted with probabilitym—1/2 at them™
step.

We also present a multi-proligFL SH for querying, where we seleétnearest centroids, instead
of just one, to ensure wider coverage. Multi-probing alldesnaintain a small number of hash
tables to maintain high accuracy and fast running time. Wavsthis through extensive experi-
ments in Section 4. The order of the query complexity for thétinprobe DFLSH is the same as
a single-probe version, sindas fixed constant. The procedure for multi-prddel SH is outlined
in Appendix A.

It is straightforward to exten®FLSH to a kernelized setting [5] (KLSH), where the items are
mapped to some feature space via the kernel trick. Given rekéunctions : U x U — R,

we can compute the distance @s(p,q) = x(p,p) — 2x(p,q) + x(q,q). This approach yields
a faster pre-processing step than the previous KLSH algurjb], since only the distance in the
feature space is needed.

Finally, we propose a hierarchic®FLSH in Appendix A.2, which recursively partitions each
Voronoi cell h times in the same manner, whetds the recursive depth. This approach yields
construction and query complexities@f L Dn*/?) andO(LDn'/?), respectively fol = 2, which
are less than those of the non-hierarchidéll SH (h = 1). Because of the exponential decrease in
the number of points per cell with, the hierarchical scheme works best wheis very large (about

> 1 million).

3 Analysis

The analysis of our algorithm is done over two aspects: 1)tidr®FLSH satisfies the locality-
sensitive property, and 2) the time complexity of queryirmpant.

Locality-Sensitivity We first analyze the probability that a miss occurs, in a sitgble, between
two itemsp and ¢ whend(p,q) = r. When computing this probability, we assume that there
is on average one point per unit volume, without loss of galitgr Although the condition for
Theorem 1 is that each cell’'s density be uniform, the theadsestill applicable to arbitrarp, since

the distribution within each cell becomes close to a unifdistribution as: increases.

Theorem 1. The probability that points p, ¢ € R” do not collide, given their distancer, is

r+ry

p(r) = Pr(h(p) # h(q)|r) = /000 u(rl)/l s(ra)(1 — exp(—C’Dréjnfl/Z))dmdrl,

r—ry|
where Cp isthe volume of a unit ball in R? and,
(D—1)Cp_19°3

u(r1) =DCpn~ 2P~ exp(—Cpn=1%+P), s(rqg) = ,
(r1) D . exp(—=Cp 1) (r2) DO D2
2 r+ri+r
g:;\/l(l—r)(l—rl)(l—rg), = %

Because(r) monotonically increases with our hash functions satisfy the, ¢, p1, p2)-sensitivity
property by settingy; = 1 — p(1) andps = 1 — p(c) for anyc > 1. For the bound on accuracy, we
provide a numerical analysis pfr) in Appendix C.

Query Complexity Next, we empirically show that the query complexity is lowrgmared to other
algorithms. As mentioned above, the query complexity issheared sum of the bucket sizes:
O(>=, b?), whereb; is the number of points in buckét We plot this quantity for Multi-probe LSH
(MPLSH), Non-uniform partitioning LSH (NULSH)DFLSH, and HierbFLSHin Figure 1, each
with equal number of buckets.

The data we use is a synthetically-generated mixture oet@aussians of dimensions 10 and 50
(see Section 4 for details). Figure 1 shows this quantitpweekt for our two algorithms for the
synthetic data set.

4 Experiments

In this section, we verify the efficiency &FLSH and HierDFL SHthrough extensive experiments.
The data sets we use are the SIFT image feature data set (BIF&hd an artificially-generated

x 10"

3 - - - -
I D-10
I D-=50
25
s
2
H
2
=1
S 15
St
2
5
g
&
1k
0.5- I
0 .
MPLSH NULSH DFLSH Hier-DFLSH

Figure 1: >~.b? of each algorithm for the syn-
thetic data set.

set of Gaussian mixtures (AG) with varying dimensions of3@,and 50. The SIFT set consits of
1 million 128-dimensional image features. The algorithnescompare against are the multi-probe
LSH [7] (MPLSH)!, and the non-uniform LSH [11] (NULSH).

In each experiment, we randomly generate 100 queries amdctireesponding 100 true nearest
neighbors. The accuracy of the algorithms is measureddayl as done by [8]{RNG|/|G|, where

G is the ground-truth set anf is the set retrieved by the algorithms. All algorithms, utihg the
undisclosed NULSH, are implemented in C++.

Parameter Scaling For hash table parameter experiements, we examine théseffieihe number
of hash tabled., and the number of probédor the multi-probe variant of our algorithm. Figures 2
and 3 show that botFLSH and HierDFLSH require small values of and L to achieve high
accuracy, while other algorithms are more sensitive todlpasameters.

1 1
0.9+ | [5 probes — 09r [
7 Erobes [L -5
0.8 | M 10 probes 08f E I[jo -
07 07t
06 06
§ 05 § 05}
['3 ['3
04 04
03 03}
02 02
01 01
O MPLSH DFLSH Hier-DFLSH O MPLSH DFLSH Hier-DFLSH
Figure 2: Accuracy aéincreases with, = 5. Figure 3: Accuracy a& changes, witlf = 2.

Dimension Scaling This section presents the results on how performance waitlesespect to the
dimension of the data. In order to keep the nature of the ddtassconsistent as possible, we use
the artificially-generated AG set, with differing dimenss Each algorithm is tested with 10 hash
tables and 2 probes. The result, which is given in Figure bysithatDFL SHachieves near-perfect
recall as dimension increases, while other algorithmsatig(Appendix D).

To see how long each algorithm requires to achieve the rpedibrmances given above, we show
the timing results in Table 4 (Appendix D). The timing restghow thaDFLSH requires less than
0.05 seconds per query to achieve perfect recall, wherbas algorithms either performs worse, or
require ten times more query time.

ILSHKI T:ht t p: / /1 shki t . sour cef or ge. net

References
[1] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Lolity-sensitive hashing scheme based
on p-stable distributions. Iroceedings of SCG, 2004.

[2] A. Gionis, P. Indyk, and R. Motwani. Similarity search figh dimensions via hashing. In
Proceedings of VLDB, 1999.

[3] P. Indyk and R. Motwani. Approximate nearest neighbawards removing the curse of
dimensionality. InProceedings of STOC, 1998.

[4] H. Jégou, M. Douze, and C. SchmidEEE Transactions on Pattern Analysis and Machine
Intelligence, 33:117-128, 2011.

[5] B. Kulis and K. Grauman. Kernelized locality-sensitivashing for scalable image search. In
Proceedings of ICCV, 2009.

[6] P.Liand A. C. Kdnig. Theory and applications of b-bitmaiise hashingCommunications of
the ACM, 54(8):101-109, 2011.

[7] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Mydtiobe LSH: Efficient indexing
for high-dimensional similarity search. Proceedings of VLDB, 2007.

[8] L. Paulevé, H. Jégou, and L. Amsaleg. Locality semsithashing: A comparison of hash
function types and querying mechanisrRattern Recognition Letters, 31:1348-1358, 2010.

[9] J. H. Pollard. On distance estimators of density in ranyodistributed forestsBiometrics,
27:991-1002, 1971.

[10] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowinigcal algorithms for document
fingerprinting. InProceedings of SGMOD, 2003.

[11] Z. Yang, W. T. Ooi, and Q. Sun. Hierarchical non-unifoilagality sensitive hashing and its
application to video identification. IRroceedings of ICME, 2004.

Appendices

A Additional Algorithms

A.1 Pseudocode for Construction and Querying

Input: Set of pointsP, Number of cellg, Number of tabled.
Output: L Hash tableqT;}E ,
forall i € {1,---,L} do
S; + t uniform random samples froR
T; + Vor onoi Partition(P,S;)
end for

Table 1:DFLSH: High-level hash table construction.

A.2 Hierarchical Scheme

To lower the query complexity, we propose a hierarchicalovimi partitioning scheme. In this
approach, we recursively partition each Voronoi cell in $aene manner up to some depth In
order to reflect the hierarchical structure, we modify fhéash tables to bé trees, where each
tree has depth. The internal nodes of each tree indicate the centroids bghnthe next level is
decided, and the leaves specify the final ground partitich@flata.

Given a partition hierarchy, a query point is simply matckethe nearest internal noded,, first-
level centroid) and traverses down the tree until it reaehlesf node.

Similarly to the non-hierarchical case, we choose n!/3 andh = 2 to balance the time taken
to locate the cell and the time taken to linearly search thhotne points in the cells. Then, the

Input: Query pointg, probe numbef
Output: Set of nearest neighbor candidatés
S {}
forall i € {1,---,L} do
V < (closest centroids (iff;) to ¢
forall c € V do
S+ SU{x|z € ¢}
end for
end for
Linearly search through to returnk nearest neighbors

Table 2: Query procedure for the Multi-ProbEL SH.

construction and query complexities @¢L Dn*/?) andO(LDn'/?), respectively. The following
algorithm shows how to construohe of hierarchical hash tables. One can repeat this procedure
L times to get a full table set. Because the number of pointhénlawest-level cell becomes

Input: Set of points”, Number of buckets, Current depthl
Output: TreeT
if d =0then
return P
end if
forall i € {1,---,L} do
S; + t Uniform random samples from?
R < Voronoi Partition(P,S;)
forall R; € Rdo
T; «Hi er-DFLSH(R;,t,d — 1)
end for
end for

Table 3:Hi er - DFLSH

exponentially small as the recursive depth increases,iérarchical scheme works best wheris
very large.

B Proofs

B.1 Proof of Theorem 1

Let ¢, be the nearest centroid associated with ppistich thatd(p, ¢,) = r1, andry = d(q, ¢;).
Then,p andq are hashed into the same cell only if there is no centroifi (i, 2). To compute the
probability of such an event, we use the following auxiliEegnma:

Lemma 1. Supposethe points are distributed at randomwith an average density of A\ per unit area
in R. Then the distribution of the distance from a random point to its nearest neighbor is given as:

u(r) = DCpIrP! exp(—C’D)\TD), (1)
where Cp, is the volume of the unit ball in RP.

Proof. The proof is a high-dimensional extension of the one giveg@jn O

As a consequence, the cumulative distribution functionfLCD
U(r) =1 —exp(—CprP) 2

of u(r) specifies the probability that there is no point3tz,) for a random point:.
Another probability we should consider is thatref i.e., the probability density () whenr and
r1 are fixed. The region over the hypersph&, r») in R” in which r, is held constant forms a

hypersphere of radiugin RP~!. Here, g is the height of the triangle whose base length,iand
the lengths of the other two sides afieandr,. By Heron’s formulay is given as:

2
9= NVIT=nT=r)=72).
wherel = (r + r1 + r2)/2. Hence, the final density(r2) is given as:

(D—1)Cpg”~%dg (D —1)Cpg"~?

S(rq) =
(2) DCDT‘lDil DCDT‘1D72

; ®)

wheredg = r/g.

Based on Equation (1), Equation (2), and Equation (3), tbeatility thatg is not assigned te, is
a double integral of the equations over all possible valiies andr,. The latter is restricted in the
range[|r — 71|, + r1] by the triangle inequality.

oo 4171
p(r) :/0 u(rl)/IT_ns(rg)U(rg)drgdrl.

Note that this expression is exact for unifofy due to Lemma 1, but the density of each cell
becomes locally uniform as grows. Since we are dealing with very large valuesipthe error
induced by non-uniformity becomes negligible.

C Numerical Analysis of p(r)

0.9

0.81

D=10
D=20|
D=30
D=50| |

0.7-

0.6-

Pr(miss|r)

L L L L L L
0 0.5 1 15 2 25 3 35

Figure 4: The plotting of vs. p(r), with varying dimensions.

Figure 4 shows the evaluation pfr) of Theorem 1 with respect to varying valuesroNote that

is the distance between a random pair of nearest neighbtss, gince we assume that there is one
point per unit volume on average, most nearest neighbolfiaik distance = 1. This coincides
with the steep increase of the miss probability around1.

From the definitoin of LSH, choosind = O(1/p;) yields a collision probability ofl —
exp(—O(1)). Thus, the plot suggests that abdyp, = 1/(1 — p(1)) ~ 2,3 tables suffice to
achieve high probability of collision for oyt ¢, p1, p2)-sensitive LSH functions in 50 dimensions.

091

0.8

07

0.6

05

Recall

041

031

0.2r

200
Figure 5: Recall change as dimension increases.

D Additional Experiments

Figure D shows the recall change as the data dimension sesedhe plot shows thBFL SHmain-
tains recall higher than 0.995 as the dimension is increts&@, while the recalls of competing
algorithms degrade noticeably. The numbers in the lastneol(SIFT) are gathered by running

AG (D =10) AG (D =20) AG (D = 50) SIFT
MPLSH 0.086 (1.0) 0.09(1.0) 0.091(0.858) 0.009 (0.004)
NULSH 0.175(0.911) 0.04(0.603) 0.04(0.287) 0.781(0.772)
DFLSH 0.008 (1.0) 0.012(1.0) 0.034(0.995) 0.045 (0.884)
Hier-DFLSH 0.002(1.0) 0.004(1.0) 0.009 (0.787) 0.011(0.804)

Table 4: Comparison of average query times (in seconds)®@iqueries. Recalls are duplicated
in parentheses to aid the comparison of time-recall trddeof

each algorithm with 5 hash tables and 2 probes. It can be ba#bRL SHand HierbDFLSH require
an order of magnitude less time than the others to achievéasion higher recall level.

